

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IMPROVING LIFE CYCLE MANAGEMENT
THROUGH SIMULATION AND

EFFICIENT DESIGN

by

Alberto A. Garcia

September 2008

 Thesis Advisor: Thomas W. Lucas
 Second Reader: Paul Sanchez

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Improving Life Cycle Management Through
Simulation and Efficient Design
6. AUTHOR(S) Alberto A. Garcia

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Headquarters, USMC Installations and Logistics (I&L)
2 Navy Annex, Washington, D.C. 20380-1775

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Life Cycle Management (LCM) is defined as a decision-making process that takes into consideration the benefits, costs,

and risks associated with each action over the full life cycle of a system. Effective LCM requires good forecasting to help
determine future requirements for design and development, acquisition, in-service support and sustainment, modernization, and
final disposal of a fleet of systems. It is in forecasting that simulation tools play a key role in LCM by helping program managers
to gain insights into their supported systems.

The Total Life Cycle Management Assessment Tool (TLCM-AT) is a probabilistic modeling and simulation analysis
tool developed to support and improve the USMC’s LCM. This powerful tool is capable of performing
“what-if” scenario analysis to compare the merits of multiple courses of action (COAs) or policies. Unfortunately, such analytical
results are predicated on a set of conditions developed in the model that have little chance of occurring in real life.

This thesis introduces a Java-based application that combines the capabilities of TLCM-AT with the benefits of a
sophisticated design of experiments (DOE) to perform in-depth sensitivity analysis of alternatives. A
well-developed DOE can simulate real life by modeling a wide range of conditions under which the performance of each COA is
measured. Data from this kind of experiment can be used to help in the development and selection of robust COAs and policies.

15. NUMBER OF
PAGES

116

14. SUBJECT TERMS Life Cycle Management, Life-Cycle Costs, Availability, Data
Farming, Design of Experiments, Nearly Orthogonal Latin Hypercube, TLCM-AT,
Light Armored Vehicle, Clockwork Solutions, SEED Center, Modeling and Simulation,
Partition Analysis 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPROVING LIFE CYCLE MANAGEMENT THROUGH
SIMULATION AND EFFICIENT DESIGN

Alberto A. Garcia

Lieutenant Commander, United States Navy
B.S., Embry-Riddle Aeronautical University, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 2008

Author: Alberto A. Garcia

Approved by: Thomas W. Lucas
Thesis Advisor

Paul Sanchez
Second Reader

James N. Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Life Cycle Management (LCM) is defined as a decision-making process that takes

into consideration the benefits, costs, and risks associated with each action over the full

life cycle of a system. Effective LCM requires good forecasting to help determine future

requirements for design and development, acquisition, in-service support and

sustainment, modernization, and final disposal of a fleet of systems. It is in forecasting

that simulation tools play a key role in LCM by helping program managers to gain

insights into their supported systems.

The Total Life Cycle Management Assessment Tool (TLCM-AT) is a

probabilistic modeling and simulation analysis tool developed to support and improve the

USMC’s LCM. This powerful tool is capable of performing “what-if” scenario analysis

to compare the merits of multiple courses of action (COAs) or policies. Unfortunately,

such analytical results are predicated on a set of conditions developed in the model that

have little chance of occurring in real life.

This thesis introduces a Java-based application that combines the capabilities of

TLCM-AT with the benefits of a sophisticated design of experiments (DOE) to perform

in-depth sensitivity analysis of alternatives. A well-developed DOE can simulate real life

by modeling a wide range of conditions under which the performance of each COA is

measured. Data from this kind of experiment can be used to help in the development and

selection of robust COAs and policies.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

THESIS DISCLAIMER

The reader is cautioned that the computer programs presented in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logical errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND AND MOTIVATION ..1
B. OBJECTIVE ..2
C. EXPECTED BENEFIT ...3
D. APPLICATION FUNCTIONALITY...3

II. BACKGROUND AND RELATED WORK ..5
A. LIFE CYCLE MANAGEMENT (LCM)...5
B. DISCRETE-EVENT STOCHASTIC MODELING5
C. TLCM-AT FUNCTIONAL OVERVIEW ...6
D. DESIGN OF EXPERIMENTS (DOE)...8
E. RELATED WORK ..9

III. DESIGN OF PROTOTYPE APPLICATION...13
A. TLCM-AT MODEL DATABASE..13
B. DATA GENERATION PROCESS AND HANDLING..............................13
C. STRUCTURED QUERY LANGUAGE (SQL) INTRODUCTION..........15
D. JAVA IMPLEMENTATION..15

IV. SCENARIO DEVELOPMENT AND EMPLOYMENT OF APPLICATION
FOR DATA GENERATION ..19
A. INTRODUCTION..19
B. SCENARIO DEVELOPMENT ..19
C. DESIGN OF EXPERIMENTS (DOE)...21
D. SIMULATION RUNS ...25

V. DATA ANALYSIS ...27
A. TLCM-AT RESULTS ...27

1. Availability..27
2. Achieved Operating Hours (AoH)..29
3. Failure-Induced Platform Events (En) ..31
4. New Spare Buys..32
5. Output Correlation ..34

B. ANALYSIS ...36
1. Data Summary ...36
2. Simple Linear Regression Model..39
3. Multiple Linear Regression Model...40
4. Polynomial Regression Model...42
5. Partition Analysis...46

VI. CONCLUSIONS ..51
A. RESEARCH SUMMARY...51
B. TLCM-AT...52
C. PROTOTYPE APPLICATION..53
D. DATA ANALYSIS ...54

 x

E. FOLLOW-ON RESEARCH...56

APPENDIX A. JAVA APPLICATION..57
A. UPDATEDATABASE CLASS ...57

1. Source Code..57
2. How It Works ...59

B. LIST CLASS...61
1. Source Code..61
2. How It Works ...62

C. NOLH CLASS..63
1. Source Code..63
2. How It Works ...65

D. NOLH CLASS..66
1. Source Code..66
2. How It Works ...66

E. UPDATESPARES CLASS..67
1. Source Code..67
2. How It Works ...69

F. UPDATEABILITYTOREPAIR CLASS ...70
1. Source Code..70
2. How It Works ...71

G. UPDATESERVERTIMES CLASS ..71
1. Source Code..71
2. How It Works ...73

H. UPDATESERVERTIMES CLASS ..73
1. Source Code..73
2. How It Works ...75

I. UPDATEREPAIRDEG CLASS ...75
1. Source Code..75
2. How It Works ...77

J. RUNPROGRAM CLASS..77
1. Source Code..77
2. How It Works ...78

K. UPDATEOUTPUT CLASS ..78
1. Source Code..78
2. How It Works ...81

L. SIMPLESTATS CLASS..82
1. Source Code..82
2. How It Works ...84

APPENDIX B. NOLH DESIGN ...85

LIST OF REFERENCES..89

INITIAL DISTRIBUTION LIST ...91

 xi

LIST OF FIGURES

Figure ES-1. Data generation process using Java application...xx
Figure 1. TLCM-AT continuous-loop model [Best viewed in color] (From

Clockwork Solutions, August 2007)..7
Figure 2. Platform hierarchical structure...8
Figure 3. Data generation process ...14
Figure 4. Portion of NOLH worksheet design ..22
Figure 5. Two-way input combinations ..23
Figure 6. Percent of systems available to operate during the 12th quarter [Best

viewed in color] ...29
Figure 7. Achieved operating hours [Best viewed in color]..30
Figure 8. Number of platform events due to failures [Best viewed in color]..................32
Figure 9. Number of new spare buys [Best viewed in color]..33
Figure 10. COA2 MOE scatter plot matrix [Best viewed in color]35
Figure 11. Summarized AoH data...37
Figure 12. Expanded COA2 outlier box plot ..38
Figure 13. Variability explained by each individual factor without interactions [Best

viewed in color] ...40
Figure 14. Base and COA1 main parameter model...41
Figure 15. COA2 and COA3 main parameter model..41
Figure 16. Baseline main parameter ANOVA and estimates..42
Figure 17. Selected predictive model ..44
Figure 18. Selected model residual plot ..44
Figure 19. AoH actual versus predicted plot...45
Figure 20. Main model graphical interactions...46
Figure 21. AoH data partition..47
Figure 22. COA2 AoH data partition ..49

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table ES-1. Description of COAs included in comparative analysis xxi
Table 1. Description of COAs..10
Table 2. Range of factors for DOE ..21
Table 3. Input parameter correlation matrix ..23
Table 4. Breakdown of COA performance ..30
Table 5. Range of Events (En) data ...32
Table 6. COA2 MOE correlation matrix ...36
Table 7. Summary of Achieved Operating Hours (AoH) data37
Table 8. Extreme values design data..38
Table 9. NOLH Design (Part 1) ...85
Table 10. NOLH Design (Part2) ..86
Table 11. NOLH Design (Part 3) ...87

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF SYMBOLS, ACRONYMS, AND/OR ABBREVIATIONS

AAO Approve Acquisition Objective
Ao Availability
AoH Achieved Operating Hours
COA Course of Action
CSV Comma Separated Value
Deg Degradation Rate
DoD Department of Defense
DOE Design of Experiments
DOF Depot Overhaul Factor
DSN Data Source Name
En Number of Platform Events Due to Failures
GUI Graphical User Interface
ICAP I-Level Capacity
IQ Induction Quantity
JDBC Java Database Connectivity
JMP Statistical Software used for analysis
LAV Light Armored Vehicle
LCM Life Cycle Management
LRU Line Replacement Unit
M&S Modeling and Simulation
MEF Marine Expeditionary Force
MOE Measure of Effectiveness
MTBF Mean Time Between Failures
NOLH Nearly Orthogonal Latin Hypercube
NPS Naval Postgraduate School
ODBC Open Database Connectivity
PM Program Manager
Pt Task Performed
R&D Research and Development
RSquare Percent of Variability Explained by Regression Model
SBn New Spare Buys
SecRep Secondary Repairable
SEED Simulation Experiments and Efficient Designs
Sh Number of Shipments between Bases
SMR Source Maintenance and Recoverability
SQL Structured Query Language
SRAN Stock Record Account Number
SRU Shop Replaceable Unit
ST Service Time
TLCM Total Life Cycle Management
TLCM-AT Total Life Cycle Management Assessment Tool
URL Uniform Resource Locator
USMC United States Marine Corps

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

First and foremost, I want to thank my wife, Elizabeth, for her patience and

support. Your continual understanding made it possible for me to successfully complete

my work at NPS. Elizabeth, your support throughout my career has made me the person

I am and has allowed me to pursue goals beyond my wildest dreams. I love you.

I want to send an enthusiastic thank you to my advisor, Dr. Tom Lucas, who

provided me with the necessary leadership and technical expertise to enable me to

complete this work. Also, Colonel Ed Lesnowicz, USMC (Ret.), who kept me focused

on the goal at hand. Equally important is Captain David Vaughan, USMC, from USMC

I&L, who envisioned this project and supported it so well—thanks!

I extend a special thanks to the Clockwork Solutions’ TLCM-AT team: Hugh

Saint, Patrick Connally, Peter Figliozzi, and Sean Breed. You provided an impressive

level of support for this research.

Lastly, I want to thank Major Brad Young, USMC, for his friendship and

assistance during our tour in Monterey.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

EXECUTIVE SUMMARY

This thesis seeks to improve the United States Marine Corps’ (USMC) Life Cycle

Management (LCM) through the development of a computer program that enables the

service to exploit the benefits of the Total Life Cycle Management Assessment Tool

(TLCM-AT) by combining its functionality with sophisticated design of experiments

(DOEs). This summary gives an overview of LCM and TLCM-AT, introduces a Java

application created during this effort, describes the methodology used during

employment of the application, and provides the resulting conclusions and

recommendations. The primary goal of this research is to demonstrate how using the

Java application with a well-designed DOE can significantly enhance the value of

TLCM-AT to the USMC. The analysis focuses on finding analytical insights that could

be useful to decision makers. A secondary goal is to provide a methodology capable of

executing closed-loop DOEs for TLCM-AT based analyses.

LCM is defined as a decision-making process that takes into consideration the

benefits, costs, and risks associated with each action over the full life cycle of a weapon

system. It requires program managers (PMs) to possess a superior holistic understanding

of the system being supported. Effective LCM requires good forecasting to help

determine future requirements for logistics and system support functions.

TLCM-AT is a probabilistic modeling and simulation (M&S) tool designed to

improve LCM throughout the service. It allows PMs to quickly gain insights into the

system being modeled. The tool helps PMs to better understand how decisions involving

system configuration, operations, logistics, and support could affect a weapon system’s

effectiveness. It generates outputs representing many system parameters, including

availability, mean time between failures, spare stock levels, cost per operating hour, and

many others.

TLCM-AT uses Microsoft Access databases to manipulate model inputs and

outputs. Users can modify the model by directly accessing its database or they can use

the Graphical Users Interface (GUI) to develop what-if scenarios. The complexity of the

 xx

database files, coupled with the burdensome nature of the GUI, makes the use of TLCM-

AT for more sophisticated DOEs very difficult. A crucial motivation for this work is to

overcome that difficulty in order for the Marine Corps to better realize the benefits of

TLCM-AT.

To overcome the difficulty of performing TLCM-AT based analyses using DOE

techniques, the author introduces a Java-based application capable of combining TLCM-

AT functionalities with sophisticated DOE. The application runs in closed-loop form

from beginning to end. It is capable of automatically modifying the Access database

models used with TLCM-AT, with inputs from a predetermined experimental design,

which includes the full specification of input settings and runs to be used during a set of

simulation experiments. This allows users to examine a broad range of possibilities with

TLCM-AT. Figure ES-1 shows the data generation process employed by the application.

Users can take advantage of experimental designs, and combine them with the baseline

model to employ the application. The application produces a file containing all output

and input data necessary for subsequent analysis.

Java
Application

TLCM-AT
Baseline Model

(Access)

Design

Updated
Working Model

(reflects Design)

TLCM-AT
Tool

Data
Analysis
Package

Tool runs prescribed
number of replications

Application cycles
through each design

point

Application launches
TLCM-AT after working

model is modified

Output data is
extracted by

application after each
simulation run

Output
Data

Figure ES-1. Data generation process using Java application

 xxi

To demonstrate the benefits of using the application, the author performs a

comparative analysis of four courses of action (COAs). These COAs are based on a

notional scenario in which Marines are deploying two battalions of Light Armored

Vehicles (LAVs) to a tropical region. Environmental conditions on the ground

significantly affect the performance of two LAV secondary repairables (SecReps).

According to the scenario, one LAV-25 battalion will deploy first, followed by the

second battalion a few weeks later. Four potential COAs are suggested to help mitigate

the anticipated impact of the two faulty SecReps. Table ES-1 describes the COAs

analyzed for this study. The author used achieved operating hours (AoH) as the primary

measure of effectiveness (MOE) for this thesis.
COA 1 o Send a large number of spares with the follow-on battalion

COA 2

o Acquire improved components
o Spend $1M on a one month Research and Development (R&D) program
o New components cost 2.5 times the cost of legacy components
o Deploy fewer improved spares and install them whenever legacy parts

are removed
o Acquire new parts when legacy parts are condemned—one for one

COA 3

o A variant of COA 2
o Legacy parts are purchased to replace condemned parts
o No money is invested in the new components
o Goal is to save some money, while maintaining similar level of

performance and maintenance usage
Baseline o No action taken

Table ES-1. Description of COAs included in comparative analysis

Using TLCM-AT by itself, an analyst could perform four “what-if” scenario

simulation experiments, each running for a predetermined number of histories, which

corresponds to replications in statistics. The output would consist of the average AoH

over every history and its standard deviation. These results are predicated on the

accuracy of the data used to develop each model, and say nothing about how sensitive the

results are to changing conditions.

Alternatively, using more sophisticated DOEs can significantly alleviate these

shortcomings. DOEs allow analysts to complete the same analysis done above, while

exploring a larger set of possibilities. For this type of study, analysts vary several

parameters simultaneously to simulate a space of possibilities, and to help identify factor

 xxii

interactions. A space of possibilities could symbolize changes in field conditions and

inaccuracies in the data used to build each model. The output from this experiment

enables analysts to perform a more in-depth analysis of each COA, help in the

identification of factor interactions, and would enable them to determine how sensitive

each model is to changing conditions.

The results of the analysis indicate that COA2 is the most robust of the four

COAs. After running 129 design points, COA2 outperforms all other alternatives

99 times; even in the designs where COA2 does not have the best performance, the AoH

differences among them have no practical significance. Further analysis of the output

reveals that the time it takes to repair a failed component has the greatest impact on the

AoH result. The insights gained by using DOEs are far superior when compared to

simple “what-if” analyses. With this information, maintenance managers can implement

reductions in repair times in different ways, including increases in capacity or personnel,

improved training, better tools, implementation of lean work habits, etc. Performance

thresholds, factor interactions, and significant factors are a few of the insights that can be

gained from DOE analysis.

The wealth of information collected from combining TLCM-AT and DOE

techniques can significantly improve the forecasting ability of decision makers. It can be

used during the development of USMC Approve Acquisition Objectives (AAOs), it can

provide insights into a system’s interactions, it can assist in the development of robust

policies or COAs, etc. Armed with this knowledge, logisticians, maintainers, and

program managers can significantly improve a system’s LCM, resulting in enhanced

reliability, availability, and maintainability. Analysts can compare proposed COAs and

could perform sensitivity analysis on each in order to ensure that a robust policy is

implemented. Other benefits include cost avoidance by making better logistical decisions

and/or rearranging planned maintenance programs, while maintaining—or even

improving—system safety, reliability, and readiness.

The author recommends that the tools presented in this thesis be implemented so

that the full benefits of TLCM-AT can be realized.

 1

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

 Life Cycle Management (LCM) can be defined as a decision-making process that

takes into consideration the benefits, costs, and risks associated with each action over the

full life cycle of a system. The LCM approach is applied throughout the life of a system;

it bases all programmatic decisions on the anticipated mission-related economic benefits

derived over the life of the system. Programmatic decisions include aspects of design

and development, acquisition, in-service support and sustainment, modernization, and

final disposal.

 The Secretary of the Navy defines specific responsibilities for those tasked with

supporting LCM efforts. The SECNAVINST 5400.15 series describes the research and

development, acquisition, and associated life-cycle management and logistics

responsibilities of the Assistant Secretary of the Navy (Research, Development and

Acquisition), Program Executive Officers, Direct Reporting Program Managers, Chief of

Naval Operations, Commandant of the Marine Corps, and Commanders of the Systems

Commands. Having specific guidance like this is very important given that every action

taken by a contractor, program manager, or operator could have a significant impact on

the reliability and effectiveness of a system, and could greatly affect the ability of our

armed forces to perform their missions.

In response to the Secretary of the Navy’s directive (SECNAVINST 5400.15), the

United States Marine Corps (USMC) acquired a new tool designed to improve their

LCM. Designed and developed by Clockwork Solutions, the Total Life Cycle

Management Assessment Tool (TLCM-AT) is a probabilistic modeling and simulation

analysis tool that uses computer models to represent a fleet of systems. TLCM-AT helps

Program Managers to better understand how decisions involving system configuration,

operations, logistics, and support could affect a system’s effectiveness. The software

generates many outputs representing system status, including availability, mean time

between failures, spare stock levels, cost per operating hour, and many others. A

 2

major disadvantage of TLCM-AT is that it is only useful for “what-if” scenario analysis.

A simulation tool of this kind would be of greater value if it contained the ability to

perform more sophisticated experiments, where a greater range of factors could be

simultaneously varied. Varying multiple factors at once would allow decision makers to

discover relatively quickly any critical interactions between two or more factors that

might otherwise take a long time to ascertain. Major Brad Young (2008) performed an

exploratory analysis on TLCM-AT where he investigated the interactions between

support and maintenance parameters, and their results on availability (Ao). This research

is an extension of Young’s (2008) work, as it focuses on automating the TLCM-AT data

farming1 process and expands on his exploratory analysis by including multiple measures

of effectiveness (MOEs).

TLCM-AT uses Microsoft Access databases to manipulate model inputs and

outputs. Users can modify the model by directly accessing its database or they can use

the Graphical Users Interface (GUI) to develop what-if scenarios. The complexity of the

database files, coupled with the burdensome nature of the GUI, makes the use of

TLCM-AT for more sophisticated designs of experiments (DOEs) very difficult. The

main motivation for this work is to overcome that difficulty in order for the Marine Corps

to better realize the benefits of TLCM-AT.

B. OBJECTIVE

 The author’s efforts are focused on developing a computer-based application

capable of automating data farming functions using TLCM-AT. Having this tool will

allow analysts to perform sensitivity analysis of proposed policies, or it can be used to

compare different courses of action (COAs); such comparisons can be used during the

development and selection of robust policies. Additionally, the author’s goal is to create

an application that can be used in closed-loop form, capable of executing a well-designed

experiment from start to finish, without any human intervention. Furthermore, we

1 Data Farming is the process of using a high-performance computer or computing grid to run a

simulation thousands or millions of times across a large parameter and value space. The result of Data
Farming is a “landscape” of output that can be analyzed for trends, anomalies, and insights in multiple
parameter dimensions (Wikipedia, 2007).

 3

demonstrate how to use the newly created application by performing a comparative

analysis of the four COAs in Young’s (2008) analysis; however, this analysis includes a

greater number of MOEs.

C. EXPECTED BENEFIT

 The first benefit of this research is the creation of an automatic process to

manipulate the input model used in TLCM-AT. This automatic process enables the

employment of sophisticated DOE functions in order to efficiently data farm the

modeling tool. The wealth of information that can be collected from this process can be

made available to LCM leaders. They can then use the insights provided by the DOE to

make the best possible decisions pertaining to LCM policies. Armed with this

knowledge, logisticians, maintainers, and program managers can significantly improve a

system’s LCM, resulting in enhanced reliability, availability, and maintainability.

Analysts can compare proposed courses of action and could perform sensitivity analysis

on each in order to ensure that a robust policy is implemented. Other benefits include

cost avoidance by making better logistical decisions and/or rearranging planned

maintenance programs, while maintaining—or even improving—system safety,

reliability, and readiness.

 The newly created application is capable of automatically manipulating Access

databases. This is particularly important in the current environment, where simulation

tools are often produced by private organizations, many of which choose to use databases

to handle inputs and/or outputs. The problem is that databases are not well suited for

easy integration with many DOE environments. Consequently, this research seeks to

make the application easy enough to modify so that anyone with more than a basic

knowledge of Java and Structured Query Language (SQL) can use it to manipulate

other databases.

D. APPLICATION FUNCTIONALITY

 Chapter IV demonstrates the capabilities of the application created for this

research. During the demonstration, the application uses TLCM-AT to analyze four

 4

COAs included in Young’s (2008) analysis. The application’s current design is capable

of collecting output data required to analyze seven MOEs. The seven MOEs collected

during the demonstration are:

• Availability (Ao) – Systems availability percentage for a period of time

• Achieved Operating Hours (AoH) – Achieved operating hours

• Events (En) – Number of platform events due to failures

• New Spare Buys (SBn) – Number of new spare buys

• Shipments (Sh) – Number of shipments between bases

• Mean Time Between Failures (MTBF) – Ratio between total achieved
operating hours and platform events due to failures

• Task Performed (Pt) – Number of tasks performed by all levels

This thesis includes six chapters. Chapter II introduces readers to the concepts of

LCM. It discusses the principles of discrete-event stochastic models and how they

compare to deterministic models. The chapter also includes a broad description of the

TLCM-AT tool, coupled with a simple overview of the merits of DOE. Chapter II closes

by presenting the work performed by Young (2008) and describes how this research

relates to it. Chapter III summarizes the process involved in creating the prototype

application. This chapter introduces the intricacies of the TLCM-AT database and how it

played a key role in the need to develop the prototype application. Discussions include a

presentation of how data should be generated, processed, and handled within the Java

application, along with an introduction to SQL and the Java implementation. Chapter IV

describes the scenarios used and how DOE was applied to the scenarios. It also covers

the simulation runs and the format of the output data. Chapter V presents all the data

analysis, and Chapter VI summarizes the conclusions.

 5

II. BACKGROUND AND RELATED WORK

A. LIFE CYCLE MANAGEMENT (LCM)

 Secretary of the Navy Instruction 5400.15 series defines LCM as “A management

process, applied throughout the life of a system that bases all programmatic decisions on

the anticipated mission-related economic benefits derived over the life of the system.

This encompasses the acquisition program, in-service support and sustainment,

modernization, and final disposal.” According to David Sykes, General Manager of IXL

Metal Castings, “Life cycle management means best practice. It doesn’t cost to do it; it

costs not to do it” (EPA Victoria, 2006). Effective LCM requires good forecasting to

help determine future requirements for logistics and system support functions.

It is in forecasting that simulation tools play a key role in LCM by helping

program managers to gain insights into their supported systems. In fact, Department of

Defense (DoD) leadership believes so strongly in the value that modeling and simulation

(M&S) brings to LCM that DoD instruction 5000.2 series requires program managers

(PMs) to include M&S throughout the acquisition life cycle. The instruction directs

reporting PMs to identify and fund required M&S resources early in the life cycle in

order to gain insights and a better understanding of the system being supported.

B. DISCRETE-EVENT STOCHASTIC MODELING

 One common M&S technique is the employment of discrete-event simulations.

Such simulations take advantage of mathematical models created to represent a complex

system, with the goal of promoting a better understanding of the system. The power of

simulation is that it can shorten the time it takes to learn basic features of the system

being modeled. By doing so, it allows analysts to discover critical interactions and a

system’s behaviors in a matter of minutes—a process which would otherwise take a

considerably longer time to discover. When properly executed, a simulation could be

thought of as a window into a possible future.

 6

Mathematical models used to represent complex systems can be categorized in

one of two ways—probabilistic or deterministic. A deterministic model uses its initial

conditions to determine the outcome, or final state, of the system. It only needs to be run

once, since the outcome does not change; it provides a single point estimate to describe

system state. A probabilistic model has embedded within random elements representing

one or more uncertainties or events within the system. This kind of model is very helpful

in describing real-life systems, specifically in cases where data are estimated, e.g.,

reliability data or arrival processes. The key for a successful probabilistic model is to

have the right distributions on the inputs and events. Provided that the inputs are

modeled appropriately, the random variations of the simulation should provide users with

a system state that closely represents the possibilities of the real system under study. For

further information on M&S processes, read Law and Kelton (1999).

C. TLCM-AT FUNCTIONAL OVERVIEW

 TLCM-AT is a probabilistic modeling and simulation analysis tool developed by

Clockwork Solutions for the USMC (Clockwork Solutions, 2007). The simulation tool

uses a model which is a simplified representation of a system at some point in time,

intended to enhance the understanding of real systems. It is a holistic, continuous-loop

representation of the life cycle of any system. Model functions include operations,

maintenance, and logistics, as shown in Figure 1. Items in blue represent inputs to the

model, while items in green represent outputs. The simulation manipulates the model to

compress system operation over time, enabling users to discern interactions and system

characteristics that would otherwise take a long time to detect. One main goal of TLCM-

AT is to develop a holistic understanding by providing users with a fleet-level view of the

system being modeled.

 7

Figure 1. TLCM-AT continuous-loop model [Best viewed in color]
(From Clockwork Solutions, August 2007)

TLCM-AT models represent a fleet of systems, like the Light Armored Vehicle

(LAV), or any other supported system. Each platform is created in the model using a

hierarchical structure. Figure 2 shows the hierarchical structure concept, where platforms

are composed of Line Replaceable Units (LRUs), while LRUs are composed of modules,

assemblies, or Shop Replaceable Units (SRUs).

 8

Figure 2. Platform hierarchical structure

The system is further broken down into submodules and other parts or

consumables. The tool models the logistical infrastructure of the supported fleet. Bases

are classified as Organizational, Intermediate, and Depot level; Depot represents the

highest level of maintenance activity and also acts as supply during acquisition of new

spares. For a further description of TLCM-AT, read Clockwork Solutions (2007).

D. DESIGN OF EXPERIMENTS (DOE)

For a simulation to be useful, it needs to be exercised using a well-designed set of

experiments. A DOE is a complete specification of all input variables over all simulation

runs. Input variables are simultaneously varied between their predefined low and high

values. With the proper design, a simulation can help an analyst develop a basic

understanding of the system modeled. It can also assist in the development of robust

policies and can be used to asses the merits of various COAs. A poorly designed

experiment, one that does not actively change multiple factors simultaneously, can waste

 9

a lot of computing time, while yielding limited insights. In order to successfully

investigate interactions, multiple factors need to be varied simultaneously.

A typical DoD model has a large number of factors, and produces outputs that

represent many MOEs. The analysis identifies many significant effects, and interactions

between two or more factors are common. Executing simulation models that

simultaneously vary a large number of factors requires a great deal of computer power

and time due to the large number of variable combinations necessary to complete the

analysis (Kleijnen, Sanchez, Lucas, & Cioppa, 2005). To maximize the usefulness of the

data collected from a simulation, while reducing the number of experiments to a

manageable level, we use a technique included in Young’s (2008) work called the Nearly

Orthogonal Latin Hypercube (NOLH) (Cioppa & Lucas, 2006). An NOLH design allows

analysts to efficiently explore much of the sample space, while reducing the number of

designs required to obtain an accurate picture of the system being modeled. Insights

gained from a well-designed experiment can be used to develop policies or to compare

the merits of various COAs.

E. RELATED WORK

As part of his thesis research, Young (2008) performed an exploratory analysis of

TLCM-AT. He analyzed four scenarios, each representing a different COA, relating to

potential decisions about the USMC LAV-25. For each scenario, five factors were

adjusted:

• Spare Levels
o Total number of spares at each repair location

• Induction Quantity
o A limit on the number of inductions that can occur at the Depot level

in a given quarter, at a given repair facility
• Capacity

o Number of parts that can be processed concurrently at a repair facility
• Service Times

o Time it takes to repair a part
• Unscheduled Removal Rates

o Part failure rate

 10

The MOE used in Young’s (2008) study is Ao, which is defined as the percent of

systems available to operate for a specific period of time.

The three scenarios being analyzed represent possible COAs for a notional

contingency deployment of the LAV. Each scenario is modeled separately, and they

represent a plan of action to replace two faulty components on the LAV-25.

• OT 702275001, Sensor Unit, Laser Designator

• OT 702261001, Control Display Unit

The main scenario has the Marines deploying for combat operations in a tropical

region and they need to include at least a battalion of LAVs in the force mix. Their

deployment consists of lead and follow-on LAV battalions. The COAs represent

alternatives on how to handle the faulty components during the deployment. Table 1

describes each of the nonbaseline COAs.

COA 1 o Send a large number of spares with the follow-on battalion

COA 2

o Acquire improved components
o Spend $1M on a one month Research and Development (R&D) program
o New LRUs cost 2.5 times the cost of legacy components
o Deploy fewer improved spares and install them whenever legacy parts

are removed
o Acquire new parts when legacy parts are condemned—one for one

COA 3

o A variant of COA 2
o Legacy parts are purchased to replace condemned parts
o No money is invested in the new LRUs
o Goal is to save some money, while maintaining similar level of

performance and maintenance usage

Table 1. Description of COAs

The five varying factors during this work affect 25 LRUs, which are determined

to be the top 25 degraders using a Clockwork Solutions-provided formula. These parts

cause the most problems during the LAV-25 life cycle, using the baseline model. For

more details on the top degrader selection, see Young (2008). Each of the three

scenarios, and the baseline, is simulated in TLCM-AT using the DOE concept and

NOLH. Each scenario runs for 129 design points, i.e., input combinations, using a

NOLH design and each design point completes 30 replications. The result of the

 11

simulation indicates that the practical change in Ao is very minimal and is too small to

effect a decision. For a more detailed look at the previous results, see Young (2008).

The small variation in Ao observed in the previous work is one of the motivations for the

author to expand upon this research.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. DESIGN OF PROTOTYPE APPLICATION

A. TLCM-AT MODEL DATABASE

When Clockwork Solutions designed TLCM-AT, they decided to use Access

databases to manipulate input and output. This choice of data structure seems fitting

given the complexity of a model designed to represent a holistic view of a system. For

any given model, there are over 120 input and output tables making up the database file.

Many of those tables contain over 240,000 line entries. One reason for this complexity is

that TLCM-AT tracks each component by serial number, i.e., each component that makes

up a platform, including LRUs, modules, submodules, and consumables, is tracked

individually. Considering that an LAV includes over 175 components, coupled with a

platform inventory of a few hundred, it is easy to see how manipulating a database of this

size can get complicated.

Running a DOE scheme with TLCM-AT requires a method of modifying the

database for each design point. The author gained knowledge by manipulating Access

databases in the hope of being able to do it manually, either by directly modifying the

database or by using TLCM-AT’s GUI. It quickly became apparent, however, that direct

database modification is too cumbersome, and an efficient method needed to be created if

anyone hoped to perform any well-designed DOE using TLCM-AT. The solution is to

create a computer application that automates the process of database manipulation to

modify the model in accordance with a design, and to extract the required outputs needed

for subsequent analysis.

B. DATA GENERATION PROCESS AND HANDLING

The data generation process is depicted in Figure 3. The newly created

application takes as inputs a file containing the NOLH design and a baseline model in an

Access database format. The baseline model is copied into a working model, which is

modified using the parameter data from the NOLH design. Using a working model

enables us to keep the baseline intact for use again during subsequent design points.

 14

After the baseline model is copied and modified, the application launches TLCM-AT,

which uses as input the modified working model. The number of replications executed

by TLCM-AT is a direct input prescribed by the application’s user. Upon completion of

the simulation run, TLCM-AT saves the output files in the same database as the input. At

that point, the application collects the output data pertaining to the MOEs of interest and

it saves the information for later analysis.

Figure 3. Data generation process

The above described process repeats itself, under the control of the application,

and it continues to run until every design point of the NOLH is completed. Once the

whole DOE is executed, the application saves a comma separated value (.csv) file

containing all MOE data extracted from the simulations. The user can use any data

analysis package to process the output data. The .csv file classifies the output data by

design point and it matches those with the values of the input parameters that were

modified prior to executing the simulation. Having the input data included in the output

file is critical for proper data analysis techniques.

 15

C. STRUCTURED QUERY LANGUAGE (SQL) INTRODUCTION

The new application’s main strength is its ability to automatically modify Access

databases. In order to accomplish this, the application uses a programming language

known as SQL. A very unusual programming language, SQL is the official standard for

relational database access (Horton, 2005). Any operation that needs to be carried out on

a relational database has to be expressed in SQL. SQL is declarative in nature, which

means that it tells the database engine what to do, not how to do it. The database engine

is a separate piece of software that carries out any user-defined SQL command. The

language is very readable in comparison to other programming languages; in fact, every

SQL statement reads like a sentence, so it takes little time to grasp the concepts. Here is

an example:

SELECT [Object type], [SRAN ID], [SERVER TYPE], [Tsf P1]

FROM [*Server times] WHERE [Object type] = “value”

In this case, the SQL statement is a query of the *Server times table included in

the database. The statement asks for values on four columns: Object type, SRAN ID,

SERVER TYPE, and Tsf P1 with criteria of Object type equal to “value.” SELECT

determines which data will be retrieved, FROM identifies the table to query, and WHERE

sets the criteria. For more information on SQL and its application, see Horton (2005).

D. JAVA IMPLEMENTATION

The most current Java Development Kit includes a class created to maintain a

connection between a Java program and a database. Java Database Connectivity (JDBC),

part of the java.sql package (Horton, 2005), is a library that provides a connectivity

interface and the means for a Java program to execute SQL statements in a relational

database. More information on JDBC can be found in Horton (2005).

The first step before using Java for our simulation is to set up a suitable JDBC

driver. Users can set up an Access database driver in Windows XP using the Open

Database Connectivity (ODBC) Data Source Administrator dialog box as follows:

 16

1. Select Start
2. Select Control Panel
3. Select Performance and Maintenance
4. Select Administrative Tools
5. double click on the Data Sources (ODBC) icon
6. Select the System Data Source Name (DSN) tab and click Add
7. Select Microsoft Access Driver (*.mdb)
8. Click finish

a. Another box will come up with the title ODBC Microsoft
Access Setup

9. Type the name of your database in the Data Source Name text box

a. A suitable description in the Description field is optional

10. Click on the Select button in the Database section

11. Browse to your database, select it, and click OK

12. Exit out of all dialog boxes

The system should now be able to work, barring any unforeseen problems. As

stated earlier, for more information on this topic, see Horton (2005).

Appendix A includes the source code for the application. The Java class

UpdateDataBase contains the Main Method. The application uses the following input:

• List of secondary repairables (SecReps)

o Intermediate and Depot Level Repairables according to applicable
Source Maintenance and Recoverability (SMR) codes

• List of SRANs2

o This list includes Organizational Level activities only
• NOLH design

o List of parameter values for each design
• Access database baseline model

2 SRAN is an internal TLCM-AT code for base location (Clockwork Solutions, 2007).

 17

Using the above input, the application first makes a copy of the baseline model

and creates a working file named “smalldb1.mdb.” This choice of name cannot be

altered, it is the only file name used by TLCM-AT whenever the tool is launched from

the command line. The number of histories is the only argument used when operating

TLCM-AT from the command line.

After the application creates the working model, it modifies it using the parameter

information included in the NOLH design. When the application makes a change to the

baseline model, it only affects the LRUs included on the SecRep list. In the case of Spare

levels, the application creates the number of new SecReps given by the NOLH design for

each location listed on the SRAN list. If the NOLH design number is zero, no new spares

are added; if it is three, three new spares of each SecRep are added to each location. For

Induction Quantity, the application sets a quarterly limit on SecRep inductions into each

depot repair facility equal to the value in the NOLH. In the case of Capacity, the

application sets a limit on the number of SecReps that each Intermediate-level facility can

process at any given time, equal to the value in the NOLH. It is important to note that

there are no limits on the total number of SecReps that can be processed; these limits

apply to the number of SecReps of the same type. The application takes the Server

Times and Repair Degradation design levels and multiplies them by their current values

to set the new levels.

Upon successful completion of all the updates, the Java application uses the

command line to launch TLCM-AT. Afterwards, the program collects the necessary data

from the working model to process the MOEs of interest. This process repeats itself for

the number of experiments in the DOE.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

IV. SCENARIO DEVELOPMENT AND EMPLOYMENT OF
APPLICATION FOR DATA GENERATION

A. INTRODUCTION

This chapter explains the four fictional LAV scenarios used as the basis for this

analysis and how the Java application is employed to generate the data. The application

uses DOE techniques to perform simulation runs on each scenario, with the purpose of

collecting enough data to be able to decide on a robust COA. After each scenario, the

application automatically collects and saves the data for analysis afterwards.

B. SCENARIO DEVELOPMENT

A notional scenario involving the deployment of LAVs forms the foundation for

this analysis. The details of the scenario are as follows: The Marine Corps receives a

warning order to deploy troops to a tropical region. Due to mission and geographical

considerations, the Marines decide to include a lead LAV battalion with the deploying

force, followed by a second battalion a few weeks later. Historical data shows that

combat operations in hot and humid environments adversely affect the unscheduled

removal rates of two computerized LRUs in the LAV system:

• OT 702275001, Sensor Unit, Laser Designator

• OT 702261001, Control Display Unit

A few weeks after the lead battalion’s arrival to theater, problems with the

above-mentioned LRUs begin to affect combat operations. At this point, decision makers

are considering the following three COAs to mitigate the effect of increased failure rates

due to environmental conditions:

• COA 1

o Send a large number of spares with the follow-on battalion
• COA 2

o Acquire improved components
o Spend $1M on a one-month R&D program

 20

o New LRUs cost 2.5 times the cost of legacy components
o Deploy fewer improved spares and install them whenever legacy

parts are removed
o Acquire new parts when legacy parts are condemned—one for one

• COA 3

o A variant of COA 2
o Legacy parts are purchased to replace condemned parts
o No money is invested in the new LRUs
o Goal is to save some money, while maintaining similar level of

performance and maintenance usage
• Baseline

o Take no action

The simulation runs using four Access database models and each model

represents a distinctive COA. Notional scenarios used in this thesis were modeled by Dr.

Peter Figliozzi, modeler and analyst for Clockwork Solutions.

The application requires a SecRep list to be included in the inputs. Using the

SMR codes as a reference, the SecRep list includes every LRU repairable at the

Intermediate or Depot level. To build the list, users can query the *Object type table,

filtering the results for Object type greater than 700000000 and less than 900000000.

The result is a list of 175 SecReps for models with no upgraded LRUs, or 177 otherwise.

After the SecRep list is developed, users need to save the file using a .csv format,

entering each SecRep on a separate row. Care needs to taken to ensure that there are no

extra characters after the last entry in the list or the application can fail. Users can locate

the cursor at the end of the last entry in the list and press “Delete” several times to ensure

that nothing else is included in the .csv file.

The *Base Names table provides the information required to create an SRAN list.

For this simulation, the list includes only the Organizational-level bases, Marine

Expeditionary Forces (MEFs) 1 through 4 and the jungle base.

 21

C. DESIGN OF EXPERIMENTS (DOE)

In order to maximize the efficiency and space-filling effect of this design, the

author uses the orthogonal and nearly orthogonal LH worksheet (Sanchez, 2005) to

develop the design points. The worksheet is an Excel-based tool developed to ease the

design of large-scale simulation experiments. The author describes five varying factors

in Table 2.

Factor Label Low
Range

High
Range

Decimal
Places Description

Spares Spares 0 5 0 Determines number of spares added to system
Induction
Quantity IQ 0 30 0 Maximum number of each SecRep that could

be inducted into each Depot for repairs

I-Level
Capacity I Cap 0 30 0

Maximum number of each SecRep that could
be processed at each I-Level facility in any
given time

Degradation
Rate Deg 0.5 1.5 4 Current value multiplied by the design value

Service Time ST 0 10 4 Current value multiplied by the design value

Table 2. Range of factors for DOE

To use the worksheet, users have to select the appropriate sheet based on the

number of factors to be varied. For this experiment, the author purposely uses the sheet

for 17-22 factors so he can develop 129 design points. Next, users can fill in the labels,

upper and lower values and number of decimal places desired. Figure 4 shows a partial

view of the NOLH Worksheet Design with the high and low values chosen for this

design, along with the number of decimal values.

 22

low level 0 0 0 0.5 0
high level 5 30 30 1.5 10
decimals 0 0 0 4 4

factor name Spares IQ I Cap Deg ST
 1 13 12 0.9531 3.3594
 4 9 13 0.9609 0.9375
 2 23 0 0.7734 4.1406
 3 27 9 0.8672 4.375
 0 12 17 0.7344 1.0156
 4 13 21 0.5078 3.9844
 2 30 23 0.7891 1.5625
 3 21 27 0.5625 3.4375
 0 1 8 0.7031 1.9531
 5 2 7 0.7656 1.1719

Figure 4. Portion of NOLH worksheet design

Each column represents a varying factor, while each row represents a design

point. Appendix B has a copy of the full NOLH design used for this experiment.

A goal of this research is to develop a metamodel that can easily explain the

relationships between input factors and model outcomes. A metamodel is defined by

Cioppa (2002) as a relatively simple function that is estimated given an experimental

design and the corresponding responses. The metamodel uses factor coefficients to

describe what effect factors have on MOEs of interest. One important characteristic of a

design of experiment is that the columns representing the inputs are not strongly

correlated, i.e., they do not have a strong linear relationship since strong correlation

among input variables can adversely affect the precision of metamodel coefficient

estimates (Cioppa, 2002). Table 3 summarizes the strength of the linear relationships

between each pair of input parameters. The number 1.000s across the diagonal show the

perfect linear relationship of each input with itself. The greatest value shown in the

correlation matrix, at 0.0274, does not represent a strong linear relationship between the

input variables of Spares and IQ.

 23

Spares
IQ
I Cap
Deg
ST

1.0000
0.0274
0.0074
0.0138
0.0111

0.0274
1.0000

-0.0000
0.0030
0.0030

0.0074
-0.0000
1.0000

-0.0084
-0.0051

0.0138
0.0030

-0.0084
1.0000

-0.0000

0.0111
0.0030

-0.0051
-0.0000
1.0000

Spares IQ I Cap Deg ST

Correlations

Table 3. Input parameter correlation matrix

Another way to look at linear relationships between pairs of input variables is to

create a scatterplot matrix displaying all two-way input combinations, like the one

displayed in Figure 5.

0

2

4

0

10

20

0

10

20

0.4

0.7

1

1.3

-1

2

5

8

Spares

0 1 2 3 4

IQ

0 5 15 25

I Cap

0 5 15 25

Deg

0.4 0.8 1.1

ST

-1 1 3 5 7 9

Scatterplot Matrix

Figure 5. Two-way input combinations

 24

The scatterplot gives a visual indication of linear relationships and, in this case,

none are present. Linear relationships are discernable in a scatterplot matrix when a

pattern exists between two inputs, e.g., large values of one input are paired with large

values of another input for a positive relationship, or large values of one input are paired

with small values of another input for a negative relationship. The ease to distinguish a

line pattern increases as the strength of the relationship increases.

In the case of Spares, the design has a low value of zero and a high value of five,

with zero decimal places; all other high and low values can be seen in Figure 4 or in

Table 2. The Java application adds the number of spares displayed in a given design

point as new objects into the *Object attributes initial table. The application has to insert

each object into the table with its own object type, serial number, and location where the

spare will be stored. These new spares are stored in the Organizational-level bases

included in the SRAN list.

The design value for IQ goes directly into the *Depot Spares Program table. The

application looks for every table entry pertaining to a SecRep and changes the existing

Quantity value, which represents the number of a specific SecRep that can be inducted at

that Depot facility on a given quarter, to the new design value. For I Cap, the process is

the same. In this case, the application updates the *Capacity table by updating the

maximum number of SecReps that an I-level facility can process at a given time. This

update applies to all I-level facilities and to all SecReps, but the limitation is specific to a

particular component, i.e., the limitation only applies to the number of SecReps of the

same type being processed in the same facility.

The application treats the Deg and ST values differently than those explained

above. For Deg, it updates the *Unscheduled Removal rates table by multiplying the Deg

design value by the existing Rate and updating it accordingly. In a similar fashion, the

application updates the *Server times table by multiplying the existing service time

value—defined in the table as Tsf P1—by the ST design value and updating it

accordingly.

 25

D. SIMULATION RUNS

At this point, we have all the input necessary to run our 129 designs for 30

replications each. Using the *Analysis Range table, the author limits the length of each

replication to 12 quarters. This limitation is designed to expedite the runs and it fits

perfectly with our scenario-based models, which end the LAV deployment after 12

quarters. Additionally, every MOE collected during this experiment describes the system

at the end of the 12th quarter. To run the tool for 30 replications, users need to include the

number 30 at the end of the command line argument used to launch the tool inside the

application’s main method.

By adjusting the simulation runs to 12 quarters each and modifying the Java

application, the author is able to shorten the length of the experiment dramatically.

During Young’s (2008) experiments, the process completed 2 design points per hour; the

revised experiment completes 3.6 design points per hour. This reduction in time is

significant given the fact that the revised application is able to modify parameters over

every SecRep, compared to the initial application that only applied changes to a limited

number of SecReps, which were selected by determining the worst degraders in the

system. The experiment includes four scenarios, 129 design points, and 30 replications

for each scenario, for a total of 15,480 runs and 143.3 hours of computing time, using a

typical Pentium® 4 computer with Windows XP Professional.

The output produced by the application is a .csv file. The file includes a header

row with the remainder rows representing a design point each. Output results include

MOEs of interest and input values lined up in the same row. It is important to note that

TLCM-AT outputs only include the sample mean and standard deviation resulting from

the replications performed for each design point, thus limiting the analysis that can be

performed by not having access to the raw data.

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

V. DATA ANALYSIS

The combination of the Java application, the capabilities of TLCM-AT, and the

benefits of the DOE described in the previous chapter, form an excellent construct, which

allows for a remarkable collection of information to be extracted from the simulation

experiments. In this chapter, the data collected and its post processing are described and

analyzed. The purpose is to demonstrate the kind of analysis that can be completed, and

insights that can be gained, by using the technology presented in this research. Using the

scenarios described in Chapter IV, the analysis centers on data collected at the end of the

12th quarter of operations, which is programmed in the scenarios as the end of the

contingency.

Throughout this analysis, it is important to keep in mind that the results presented

here are only applicable to the four scenarios included in the simulation, and should not

be generalized to other applications. The primary goal is to demonstrate how using the

Java application with a well-designed DOE can significantly enhance the value of

TLCM-AT to the USMC. The analysis focuses on finding analytical insights that could

be useful to decision makers.

A. TLCM-AT RESULTS

1. Availability

Ao differences among COAs are minimal, and by themselves do not justify any

decision; this behavior closely matches what Young (2008) found in his study. This

result is very surprising, given the fact that for this study, a larger number of SecReps

were affected by the DOE modifications. During Young’s (2008) analysis, only 25

SecReps were affected by the modifications, compared to a minimum of 175 in this

study. The unexpected behavior of Ao within TLCM-AT can be attributed to the way the

tool measures Ao. According to Clockwork Solutions (2005), the tool measures Ao as

the ratio between the average number of platforms that are operating and the number of

platforms that should be operating. An operating object, including platforms, is defined

 28

further as an object that is populated—i.e., every required subassembly is installed. This

definition of populated does not cover the material condition of the components

populating the object; as a result, an object appears available in terms of Ao, but it might

be filled with faulty components.

Dr. Naaman Gurvitz, chief scientist for Clockwork Solutions, hypothesizes that

the surprising Ao behavior is because in these models there are a total of 703 LAVs, 211

of which are not driven during the simulation and, therefore, they achieve 100%

availability. Thus, when the tool averages the availabilities in quarter 12 over all the

platforms, the changes are being suppressed, resulting in smaller Ao variations (Gurvitz,

2008).

Figure 6 shows Ao data from each COA independently sorted in increasing order.

The numbers across the x axis have no meaning other than to show that each series

represents 129 design points, but no connection can be made between design points and

the index value. One way to read this graph is to see how all COAs achieve an Ao of 78

percent or better in 124 of the 129 design points. More than 96 percent of all design

points have an Ao between 78 and 84 percent. In general, COA2 is better than COA3,

followed by COA1 and baseline, respectively. With the exception of some small

differences, Ao data for each COA follows a very similar pattern; the range of data is

nearly the same for all COAs, from 72 to 84 percent. The author uses the same approach

to build graphs from the other MOEs collected during the simulation.

 29

Availability (Ao)
Quarter 12

0.72

0.74

0.76

0.78

0.8

0.82

0.84

1 26 51 76 101 126

Design Points

Pr
op

or
tio

n
of

 S
ys

te
m

 A
va

ila
bi

lit
y

Base

COA1

COA2

COA3

Each data set
independently sorted
in increasing value

A total of 129
design points

Less than 5 design
points with Ao < 0.78

Figure 6. Percent of systems available to operate during the 12th quarter
[Best viewed in color]

2. Achieved Operating Hours (AoH)

Figure 7 represents AoH data independently sorted in increasing order. The data

shows that there is a significant difference in the number of AoH among COAs, with

COA2 consistently producing the best results, followed by COA3 and COA1,

respectively. AoH data for COAs 1-3 converge at 123,916, because that is the

programmed number of operating hours required in the scenarios. COA2 achieves fewer

than 110,000 operating hours in 5 of 129 design points, while it exceeds 120,000

operating hours in 86 design points. At the same time, COA3 achieves fewer than

110,000 operating hours in 33 of 129 design points. In contrast, the baseline model

achieves fewer than 110,000 in 115 of 129 design points.

 30

Achieved Operating Hours (AoH)
Fleet Numbers for 12th Qtr

70,000

80,000

90,000

100,000

110,000

120,000

1 26 51 76 101 126

Design Points

O
pe

ra
tin

g
H

ou
rs

Base

COA1

COA2

COA3

123,916 Scheduled
Operating Hours

Figure 7. Achieved operating hours [Best viewed in color]

The 129 design points represent a space of possibilities, i.e., a range of possible

conditions that might materialize during real-world circumstances. Table 4 shows a

breakdown of how each COA performed against the others throughout the space of

possibilities. The numbers represent how many times a COA in the row heading

outperforms a COA in the column heading. For example, COA2 outperforms COA3 a

total of 99 times; the baseline does not outperform any other COA. Since COA2

produced such positive results over a much greater number of design points, and has the

smallest observed variance, it can be concluded that it is the most robust COA of the four

analyzed.

 base 1 2 3
base 0 0 0

1 129 16 25
2 129 113 99
3 129 104 30

Table 4. Breakdown of COA performance

COA2
achieved better

than COA1
113 times

 31

A robust COA can yield fewer AoH surprises when compared to other

alternatives, due to their superior performance over the whole space of possibilities.

Figure 7 shows how well COA2 behaved over a wide range of parameter values. Such a

performance provides evidence that this alternative is the least sensitive to changes in

field conditions, thus producing the fewest surprises if implemented. Range is another

measure of robustness that can be applied to this data. COA2 has a range of just over

21,000 operating hours compared to the baseline, COA1 and COA3, with a range of

53,000, 40,000, and 32,000 operating hours, respectively. The small range achieved by

COA2 provides additional evidence that, if implemented, COA2 would produce the

fewest surprises. For the operator, these results suggest that this COA should provide a

minimum of 102,852 operating hours, which is the lowest AoH in the data set, regardless

of drastic changes in field conditions. Given the dynamic nature of combat operations,

having access to this kind of information is critical to selecting a robust COA.

3. Failure-Induced Platform Events (En)

Figure 8 represents failure-induced platform events (En) data during the 12th

quarter. The most interesting part in this graph is how the data set representing COA2

has the smallest range among all alternatives. Table 5 represents a data range

comparison. COA2 has the lowest difference between lowest and highest levels,

providing evidence of its level of stability throughout the sample space. This seems to fit

perfectly with COA2’s robust nature and the expectation of few surprises. The baseline

model consistently achieves a lower En than any other alternative, but these lower values

are a result of the system’s exceedingly low AoH, i.e., a platform has to be operating

before it can have a failure. It is noteworthy that COA2 achieves lower En than COAs 1

and 3, in spite of having achieved a greater number of AoHs, which means that the

platforms operated longer, but failed fewer times. COA2 is able to operate longer while

experiencing fewer failures because it uses two improved LRUs to replace the two

previously identified faulty LRUs, and these new and improved components are modeled

with far superior reliability than the legacy ones.

 32

 Base COA1 COA2 COA3

Max 1,763.8 2,229.6 1,638.4 1,931.8

Min 927.1 1,270.7 1,247.1 1,216.0

Difference 836.7 958.9 391.4 715.8

Table 5. Range of Events (En) data

Events (En)

900

1,100

1,300

1,500

1,700

1,900

2,100

2,300

1 26 51 76 101 126

Design Points

Ev
en

ts

Base

COA1

COA2

COA3

Figure 8. Number of platform events due to failures [Best viewed in color]

4. New Spare Buys

SBn data, shown in Figure 9, shows a similar trend in terms of data range. Again,

COA2 is the most consistent of the four alternatives and it can provide the fewest

surprises to the user. In many designs, COA2 has a higher SBn number than the other

alternatives; still that is a result of the scenario, which programmed the system to replace

failed SecReps with new spare parts. The baseline achieves low SBn levels for similar

reasons, as the scenario is programmed to buy spare parts only when SecReps are

 33

condemned by the system. In the baseline scenario, new spare buys are triggered by the

condemnation rates, while in COA2, new spare buys are triggered by SecRep failures,

resulting in increased SBn levels.

New Spare Buys (SBn)

600

700

800

900

1,000

1,100

1 26 51 76 101 126

Design Points

N
um

be
r o

f N
ew

 B
uy

s

Base

COA1

COA2

COA3

Figure 9. Number of new spare buys [Best viewed in color]

The baseline SBn numbers are driven by the condemnation rates implemented in

the model. When any previously identified faulty LRU requires a Depot level repair, the

part is condemned or repaired, based on a condemnation rate included in the model.

TLCM-AT uses a random number and the aforementioned rate to determine the fate of

the failed part. If the LRU is condemned, the model triggers a new spare buy.

Condemnation rates are small enough to result in few spare purchases, since most LRUs

are repaired several times before they are condemned, and replaced by a new spare.

Alternatively, COA2 is implemented to handle LRU failures differently; the model

triggers a new spare part purchase as soon as one of the identified LRUs fails, resulting in

greater SBn number. The condemnation rate used in the baseline model plays no role in

COA2.

 34

5. Output Correlation

Figure 10 shows a COA2 scatter plot of every MOE collected in the simulation.

This plot provides users with insight into the behavior of TLCM-AT. Experience dictates

that there should be a correlation between many pairs of MOEs. Many of the existing

ones are obvious, e.g., Sh and En, En and Pt, Sh, and Pt, etc. More interesting is the

exploration of the not-so-obvious correlations such as AoH, which has an interesting

relationship with En, Sh, and Pt. AoH achieves consistently high values in the low and

high ends of En, Sh, and Pt, alternatively; when these three outputs are in their middle

ranges, AoH is less predictable. Ao has the same behavior as AoH in relationship to En,

Sh, and Pt. In Figure 10, the COA2 AoH versus En plot shows how, in the middle ranges

of En, AoH is less predictable, but as En data moves out to the low and high ends, AoH

consistently achieves high values. From a maintenance professional perspective, these

relationships are the most interesting. In addition, the scatter plot shows a very clear

extreme point, which will be discussed later in the analysis.

 35

0.73

0.76

0.79

0.82

0.85

105000
110000
115000
120000
125000

1200
1300
1400
1500
1600

850
900
950

1000
1050

2300
2500
2700
2900
3100

75
80
85
90
95

5500
6000
6500
7000
7500
8000

Ao

0.73 0.77 0.81 0.85

AoH

105000 120000

En

1200 1400 1550

SBn

850 950 1050

Sh

2300 2700 3000

MTBF

75 80 85 90 95

Pt

5500 6500 7500

COA2 Scatterplot Matrix

90000

100000

110000

120000

Ao
H

En

COA2 AoH vs. En

AoH achieves consistently high
values in the low and high
values of En, Sh, and Pt.

Consistently high AoH

Figure 10. COA2 MOE scatter plot matrix [Best viewed in color]

Table 6 displays a correlation matrix of every COA2 MOE combination. The

correlation matrix describes how strong the correlation is between two MOEs—a

correlation equal to one means there is a perfect linear relationship between two data sets.

Correlation between Sh and Pt is greater than .99, showing that their correlation is very

strong, i.e., either is a very strong predictor for the other.

 36

Ao
AoH
En
SBn
Sh
MTBF
Pt

1.0000
0.9234

-0.0944
0.6670

-0.1543
0.5744

-0.1954

0.9234
1.0000
0.0152
0.7633

-0.0557
0.5212

-0.0931

-0.0944
0.0152
1.0000
0.6305
0.9949

-0.8438
0.9939

0.6670
0.7633
0.6305
1.0000
0.5726

-0.1290
0.5420

-0.1543
-0.0557
0.9949
0.5726
1.0000

-0.8775
0.9969

0.5744
0.5212

-0.8438
-0.1290
-0.8775
1.0000

-0.8965

-0.1954
-0.0931
0.9939
0.5420
0.9969

-0.8965
1.0000

Ao AoH En SBn Sh MTBF Pt

COA2 MOEs Correlations

Table 6. COA2 MOE correlation matrix

B. ANALYSIS

The author decided to use AoH as the main MOE of interest for this analysis. As

a result, this section seeks to identify the critical factors affecting AoH by demonstrating

a comprehensive analysis of the output data. The section starts with a data summary, and

continues with the search for critical factors and the creation of a metamodel.

1. Data Summary

Before moving to the identification of critical factors, it helps to take a good look

at the whole data set. Figure 11 shows a summary of AoH data separated by COA. The

figure shows the distribution for each alternative, along with some statistics, including

sample mean. This result clearly shows, once again, the strength of COA2. Still, the

nature of these data sets makes the use of sample mean less attractive due to its sensitivity

to outliers and its sensitivity to behaviors like those of COAs 1 through 3, where they

achieve a required number of operating hours and then stop operating. A better statistical

measure for this analysis is the sample median, which is not affected by either outliers or

tightly grouped data subsets. Table 7 compares the mean and median for each data set.

The median in this case provides a better summary measure of the data. Baseline data

shows a lower median than the mean, which indicates that the true performance of the

baseline is worse than previously expected. The opposite can be said about COAs 1

thorough 3; in these cases, the median is higher than the mean, providing evidence that

these alternatives are, indeed, significantly strong.

 37

70000

80000

90000

100000

110000

120000

130000

6.2

13.2

17.8

13.2

14.7

10.9

4.7

8.5

7.8

1.6

1.6

0.0

Mean
Std Dev
Std Err Mean
upper 95% Mean
low er 95% Mean
N

91486.162
12448.29

1096.0108
93654.807
89317.518

129

Moments

Base

70000

80000

90000

100000

110000

120000

130000

0.0

0.0

1.6

5.4

10.1

7.0

7.0

4.7

9.3

6.2

48.8

0.0

Mean
Std Dev
Std Err Mean
upper 95% Mean
low er 95% Mean
N

112270.85
13175.773
1160.0622
114566.23
109975.47

129

Moments

COA 1

70000

80000

90000

100000

110000

120000

130000

0.0

0.0

0.0

0.0

0.0

0.0

0.8

3.1

10.9

18.6

66.7

0.0

Mean
Std Dev
Std Err Mean
upper 95% Mean
low er 95% Mean
N

120349.49
4546.7577
400.3197
121141.6

119557.39
129

Moments

COA 2

70000

80000

90000

100000

110000

120000

130000

0.0

0.0

0.0

0.0

3.1

3.9

7.0

11.6

7.8

12.4

54.3

0.0

Mean
Std Dev
Std Err Mean
upper 95% Mean
low er 95% Mean
N

116555.14
9097.3336
800.97556

118140
114970.27

129

Moments

COA 3

AoH Distributions

Figure 11. Summarized AoH data

 Base COA1 COA2 COA3
Median 89766.52 119762.9 122474.9 121484.1
Mean 91486.16 112270.8 120349.5 116555.1

Table 7. Summary of Achieved Operating Hours (AoH) data

Next, the author takes a closer look at COA2, since it appears to be the most

robust alternative. Figure 12 expands COA2’s outlier plot to allow identification of the

extreme values included in the data. The extreme values are identified as designs 77, 81,

75, 71, and 59.

 38

105000

110000

115000

120000

125000

AoH

Design 77

Design 81

Design:
59
71
75

Figure 12. Expanded COA2 outlier box plot

To explain the behavior of these points, we need to look at the input of each

design as shown in Table 8. The worst-performing design point has no spares or

induction quantity; it has a relatively high capacity, a higher than normal degradation,

and very high service time. Any experienced maintenance professional would have a

difficult time arguing with these results. This set of parameters would have been

disastrous in a real-life scenario; in fact, the results should have been worse than what

they are, but they still show that TLCM-AT does behave in a rational manner.

Design Spares IQ Capacity Degradation ServTime AoH
77 0 0 23 1.1172 8.5938 102852.4
81 1 8 0 1.4688 8.2813 106706.3
75 0 28 23 1.2344 8.8281 108084.1
59 1 25 12 1.4453 10.0000 108883.5
71 1 17 9 1.4922 6.0156 108926.1

Table 8. Extreme values design data

Looking at the rest of the data points, the common characteristics among the

extreme values are the high service times, coupled with low spare levels. Another

interesting point is that when spares levels are 1, degradation increases to near its

 39

maximum level. Thus, one spare is not enough when the failure rate gets too high.

Capacity and induction quantity do not seem to make a difference at this point, but

further analysis will determine a final list of critical factors.

2. Simple Linear Regression Model

The regression analysis in this section starts with a look at the individual factors

by way of simple linear regression models, followed by a study of all factors, in order to

support the later development of a metamodel. Figure 13 shows the percent of the

variability of the data explained by each of the quantitative factors alone. RSquare is the

measurement used to determine percent of variability explained by a model. It represents

the ratio of variation in AoH explained by regression, divided by the total observed

variation in AoH. A value of RSquare equal to 100 percent means that the selected

model fits perfectly; conversely, a value of zero indicates that the fit is no better than

using the mean of the data as a model.

The first insight into our system is that service time has the most impact on AoH

and, equally important, the above assessment that capacity and induction quantity do not

seem to make a difference is proven by this simple analysis. These values were

calculated by fitting a simple linear regression model for each regressor against AoH.

Spares and degradation are the only other factors to show any influence. From the values

in Figure 13, it is clear that service time and degradation are critical predictors of how

many operating hours a fleet of LAVs can run successfully, while a full regression model

will decide the effect of spares.

 40

Individual Parameter RSquare

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ServTime

Deg

Spares

IQ

Cap

RSquare

COA3

COA2

COA1

Base

Figure 13. Variability explained by each individual factor without interactions
[Best viewed in color]

3. Multiple Linear Regression Model

The first attempt to develop a metamodel is to use a multiple linear regression

model, without polynomial terms, with every factor in the simulation. It is always a good

idea to do this in order to determine how well this simple model behaves. This process is

not the same as the one displayed in Figure 13. In this instance, every factor is included

in one model. In contrast, the models described in Figure 13 were built using one factor

at the time. Figures 14 and 15 display the summary results for each COA presented.

 41

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.929294
0.92642

3376.674
91486.16

129

Base Summary of Fit

-8000
-6000
-4000
-2000

0
2000
4000
6000
8000

10000

Ao
H

 R
es

id
ua

l

60000 80000 100000 120000
AoH Predicted

Base Residual by Predicted Plot

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.79425
0.785887
6096.746
112270.8

129

COA1 Summary of Fit

-15000

-10000

-5000

0

5000

10000

Ao
H

 R
es

id
ua

l

80000 100000 120000 140000
AoH Predicted

COA1 Residual by Predicted Plot

Figure 14. Base and COA1 main parameter model

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.710892
0.69914

2493.928
120349.5

129

COA2 Summary of Fit

-12000
-10000
-8000
-6000
-4000
-2000

0
2000
4000
6000

Ao
H

 R
es

id
ua

l

105000 115000 125000
AoH Predicted

COA2 Residual by Predicted Plot

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.763499
0.753885
4513.184
116555.1

129

COA3 Summary of Fit

-10000

-5000

0

5000

10000

Ao
H

 R
es

id
ua

l

90000 110000 120000 130000
AoH Predicted

COA3 Residual by Predicted Plot

Figure 15. COA2 and COA3 main parameter model

 42

Figures 14 and 15 show how challenging it can be to analyze a scenario in

TLCM-AT, where the platforms have an easily achievable target for required operating

hours and do not operate past that level. The clear diagonal lines included in the residual

plot of COAs 1-3 represent the design points where the LAVs reached the required

operating hours and stopped operating. This is a normal situation in real life, but

complicates the data analysis. The remainder of the analysis will focus on the Baseline

scenario, due to its more conforming data set.

4. Polynomial Regression Model

An analysis of variance (ANOVA) on the Baseline multiple linear regression

model described in Figure 14 results in an F-test p-value3 of less than .0001, providing

evidence that the regression model is highly significant. The RSquare is a very strong 93

percent. Model results prove that, in the presence of service time, degradation, and

spares, the parameters’ induction quantity and capacity are not statistically significant at

any reasonable level. Figure 16 shows the result of the F test and parameter estimates.

Model
Error
C. Total

Source
5

123
128

DF
1.8432e+10
1402437361
1.9835e+10

Sum of
Squares

3.6865e+9
11401930

Mean Square
323.3213

F Ratio

<.0001*
Prob > F

Base Analysis of Variance

Intercept
Spares
IQ
Capacity
Degradation
ServTime

Term
126959

679.43285
6.371247

14.562374
-19447.26
-3608.159

Estimate
1459.753
197.6314
34.02382
34.01341
1022.058
102.2003

Std Error
86.97
3.44
0.19
0.43

-19.03
-35.30

t Ratio
<.0001*
0.0008*
0.8518
0.6693
<.0001*
<.0001*

Prob>|t|

Base Parameter Estimates

Figure 16. Baseline main parameter ANOVA and estimates

3 The P-value is the probability, calculated assuming Ho is true, of obtaining a test statistic value at

least as contradictory to Ho as the value that actually resulted. The smaller the P-value, the more
contradictory is the data to Ho (Devore, 2004).

Estimates are marginal costs
per unit of input. They can
be positive (Spares) or
negative (ServTime).

Assuming all other inputs remain fixed, for each unit
of Degradation, AoH decreases by 19,447.26

 43

Armed with this information, a decision maker can determine that an increase in

service time would have the greatest potential impact in AoH, followed by degradation

and spares. The main parameter model has every attribute needed to be chosen as an

acceptable metamodel for our system. Nevertheless, the residual plot shows a trend that

does not fit the regression assumptions. To solve this problem, the author develops a

different model, one that includes two-way interactions between parameters and

quadratic terms.

In order to identify the significance of parameter two-way interactions, the author

fits a polynomial regression model to the data using the JMP statistical software. The

software allows the user to execute a stepwise regression, which is a method of selecting

a subset of parameters to develop a good linear mathematical model that fits a data set.

Analysts must be careful to balance simplicity with explanatory power, consequently, the

author limits the new model to a second-degree polynomial regression model. Stepwise

regression helps to select a set of factor; while a least squares linear regression is used to

create the fitted metamodel.

After an iterative process of examining various models with their strengths and

weaknesses, the model shown in Figure 17 is chosen. Figure 17 shows the parameters

sorted in order of significance, where the first two parameters have a negative impact on

AoH, and the rest have a positive impact.

 44

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.991182
0.990749
1197.321
91486.16

129

Base Full Regression Summary

Intercept
Spares
Degradation
(Degradation-1.00001)*(Degradation-1.00001)
ServTime
(ServTime-5.00001)*(ServTime-5.00001)
(Spares-2.50388)*(ServTime-5.00001)

Term
123023.1

688.31995
-19450.96
10549.254
-3607.947
393.72058
110.17993

Estimate
484.1437

70.0498
362.3932
1399.358
36.23828
13.99817
22.77668

Std Error
254.10

9.83
-53.67

7.54
-99.56
28.13

4.84

t Ratio
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*

Prob>|t|

Parameter Estimates

ServTime
Degradation
(ServTime-5.00001)*(ServTime-5.00001)
Spares
(Degradation-1.00001)*(Degradation-1.00001)
(Spares-2.50388)*(ServTime-5.00001)

Term
-3607.947
-19450.96
393.72058
688.31995
10549.254
110.17993

Estimate
36.23828
362.3932
13.99817

70.0498
1399.358
22.77668

Std Error
-99.56
-53.67
28.13

9.83
7.54
4.84

t Ratio
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*

Prob>|t|

Sorted Parameter Estimates

Figure 17. Selected predictive model

The analysis of variance for this model also resulted in an F-test p-value of less

than .0001, once again, providing evidence that the regression model is significant. The

metamodel resulted in an RSquare value of 99 percent, and an equation containing seven

terms. Each factor in the model is statistically significant at less than the 1 percent level.

Figure 18 shows the residual plot for the selected model. The dispersion in the plot

provides enough evidence to support the normality and standard deviation assumptions

embedded in regression analysis.

-5000
-4000
-3000
-2000
-1000

0
1000
2000
3000
4000

Ao
H

 R
es

id
ua

l

70000 90000 110000 130000
AoH Predicted

Residual by Predicted Plot

Figure 18. Selected model residual plot

 45

A high value of RSquare can lead to a phenomenon known as overfitting a model.

This phenomenon describes a situation where a model is able to explain variability, but is

not able to predict. The risk of overfitting the data using this model is limited because the

regression model chosen is a second-degree polynomial, and the number of terms is

relatively small compared to the sample size. Figure 19 shows the AoH actual versus

predicted plot, using the selected model.

70000

80000

90000

100000

110000

120000

Ao
H

 A
ct

ua
l

70000 90000 110000 130000
AoH Predicted P<.0001
RSq=0.99 RMSE=1197.3

Base AoH Actual by Predicted Plot

Figure 19. AoH actual versus predicted plot

One strength of the model is its ability to show relationships and interactions

between important factors and AoH. The model shows that the interaction between

spares and service time is significant. Figure 20 displays the interaction profiles

graphically.

 46

70000

90000

110000

Ao
H

70000

90000

110000

Ao
H

70000

90000

110000

Ao
H

Spares

0.5

1.5

0

10

0 1 2 3 4 5 6

05

Degradation

0

10

0.5 0.8 1.1 1.4 1.7

0
5

0.5

1.5

ServTime

0 2 4 6 8 10

Spares
D

egradation
ServTim

e

Base Model Interaction Profiles Low Service
Times minimizes
ef fects of Spares

No interactions

Figure 20. Main model graphical interactions

Figure 20 shows how low values of service time reduce the effect of lower spares.

Such an interaction makes sense if SecReps are repaired quickly, it does not matter how

many spares are in the system. Additionally, the figure shows (in broken lines) the

interaction between spares and degradation. Since the lines are either close to parallel, or

do not appear to ever intersect, their interaction is not significant, meaning the value in

one does not significantly affect the outcome in terms of the other.

5. Partition Analysis

Now that the metamodel is selected, a partition analysis can be used to gain

further insight from the data. A partition analysis is made up of successive partitions of

the data according to the relationship between the predictors and the MOE values. The

main benefits of this technique are that (1) it can explore relationships without the need

for a parametric model, (2) it can easily handle large sets of data, and (3) the results are

very easy to communicate to decision makers. Figure 21 shows the AoH data partition,

and does a good job of providing a pictorial view of thresholds affecting system

 47

performance. A quick glance allows users to discern parameter levels that can result in

great or bad performance, or it can be used to look at change points or thresholds in the

data.

70000

80000

90000

100000

110000

120000

Ao
H

All Row s

ServTime>=4.5313

Degradation>=0.8125

Degradation<0.8125

ServTime<4.5313

ServTime>=1.7969

Degradation>=0.7734

Degradation>=1.1094

Degradation<1.1094

Degradation<0.7734

ServTime<1.7969

Degradation>=1.0703

Degradation<1.0703

All Row s

ServTime>=4.5313

Degradation>=0.8125 Degradation<0.8125

ServTime<4.5313

ServTime>=1.7969

Degradation>=0.7734

Degradation>=1.1
094

Degradation<1.1094

Degradation<
0.7734

ServTime<1.7969

Degradation>=
1.0703

Degradation<1.0703

0.900
RSquare

129
N

6

Number
of Splits

All Rows
Count
Mean
Std Dev

129
91486.162
12448.29

27.520341
LogWorth

19581
Difference

ServTime>=4.5313
Count
Mean
Std Dev

71
82682.291
6408.1637

13.854376
LogWorth

10466.7
Difference

Degradation>=0.8125
Count
Mean
Std Dev

49
79439.088
4133.2984

Degradation<0.8125
Count
Mean
Std Dev

22
89905.789
4315.772

ServTime<4.5313
Count
Mean
Std Dev

58
102263.31
9100.5542

8.8164845
LogWorth

12800.9
Difference

ServTime>=1.7969
Count
Mean
Std Dev

35
97187.114
6749.7703

7.7491193
LogWorth

12011.1
Difference

Degradation>=0.7734
Count
Mean
Std Dev

26
94098.534
4179.4784

4.1123123
LogWorth

5726.45
Difference

Degradation>=1.1094
Count
Mean
Std Dev

12
91015.06

2934.7552

Degradation<1.1094
Count
Mean
Std Dev

14
96741.511
3163.1528

Degradation<0.7734
Count
Mean
Std Dev

9
106109.68
4298.0599

ServTime<1.7969
Count
Mean
Std Dev

23
109987.97
6386.9035

4.337605
LogWorth

9383.14
Difference

Degradation>=1.0703
Count
Mean
Std Dev

10
104684.45
4426.3764

Degradation<1.0703
Count
Mean
Std Dev

13
114067.6

4315.3212

Partition for AoH

The first partition, ServTime at 4.5313,
results in an AoH mean dif ference of:
102,263 - 82,682 = 19,581

Worst results are achieved w ith:
Degradation >= 0.8125
ServTime >= 4.5313

The best results are achieved w ith:
Degradation < 1.0703
ServTime < 1.7969

Figure 21. AoH data partition

First partition splits
data set where

ServTime = 4.5313

Second
partition splits
data set where
Degradation =

0.8125

 48

The partition figure shows that service time is the most influential factor on the

whole data set. In the first partition, the data set is divided by choosing the most

influential parameter within that data set; which for this split is service time; it is split at

4.53134 times the baseline model service time. The two resulting data sets possess

different characteristics, with sample means equal to 82,682 and 102,263 achieved

operating hours (AoH), respectively. For the next partition, the system looks at both data

sets in search of the most influential parameter. This time, the system finds that the

partition with the smaller mean has the most influential parameter—degradation. Two

new data sets are created from that partition, and the resulting means are 79,439 and

89,905 achieved operating hours, respectively. Each subsequent partition finds the most

influential parameter among all existing data sets, and splits the data at the threshold

point.

Analysts can use this technique to isolate points of interest in the data to

determine what parameter levels cause those results. Figure 21 shows two examples of

these, and the best and worst results are isolated to identify the conditions leading to such

performance. In the case of best results, degradation is less than 1.07 times the baseline

degradation and service time is less than 1.80 times the baseline service time. This is the

kind of information that can make a difference in the development of a COA, or it could

significantly help a decision maker do a better job by explicitly identifying critical

performance thresholds.

In another example of how to use partition trees, the author takes a closer look at

the extreme points included in COA2 AoH data set. The object is to identify thresholds

conducive to such extreme behaviors. Figure 22 shows the partition tree for COA2 AoH

data, where every extreme point is included on the left-most spares partition. One way to

read this figure is to look at the thresholds included in that partition, i.e., every outlier

takes place under the following circumstances:

• Spare < 2
• Degradation >= 0.9688
• ServTime >= 5.2344

4 The number 4.5313 has no units; it is a factor used to adjust Service Time values used during each

design. The baseline value is adjusted by multiplying it by this factor.

 49

As an analyst, it is easy to explain to a decision maker the meaning of this

partition. The portion of sample space that produced these outliers is now identified by

the values above.

105000

110000

115000

120000

125000

Ao
H

All Row s

ServTime>=5.2344

Degradation>=0.9688

Spares<2

Spares>=2

Degradation<0.9688

Spares<1

Spares>=1

ServTime<5.2344

ServTime>=4.6094

ServTime<4.6094

All Row s

ServTime>=5.2344

Degradation>=0.9688

Spares<2 Spares>=2

Degradation<0.9688

Spar
es<1

Spares>=1

ServTime<5.2344

ServTim
e>=4.60...

ServTime<4.6094

0.812
RSquare

129
N

5

Number
of Splits

Partition for AoH

Every Extreme Point
Located in This Partition

Figure 22. COA2 AoH data partition

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

VI. CONCLUSIONS

A. RESEARCH SUMMARY

The main achievement of this effort is the development of a computer-based

application capable of integrating sophisticated DOE techniques with the capabilities of

TLCM-AT, in an effort to automate modeling and simulation of LCM functions.

Capable of operating in a “closed-loop” form, the resulting application can execute a

well-designed experiment from start to finish, without the need for any human

intervention. Results presented in this thesis illustrate how employing this application

can significantly increase the value of TLCM-AT to the USMC by enabling analysts to

perform sensitivity analysis of proposed policies. Moreover, the research shows how the

application can be used to compare the merits of different COAs, such as the comparative

analysis performed in Chapter V, which can be used during development and selection of

robust policies.

Users can modify the source code included in this thesis, in an effort to automate

implementation of DOE, or other M&S techniques, where modifications of a database are

needed to control input and output. Anyone with a good knowledge of Java

programming and a strong understanding of SQL and relational databases can easily

modify the application developed here for use in other efforts. There are no limits to the

number of ways that the application can be used to make the most of TLCM-AT’s

capabilities.

Chapter V provides a simple, yet powerful, example of the kind of studies that can

be done using TLCM-AT to analyze LCM functions. The analysis presented serves to

demonstrate the kind of process that can be employed by decision makers to gain insights

into the synergies of a fleet of systems, which could lead to better and more informed

decisions, and improved system readiness. The process enhances the capabilities of

TLCM-AT by applying DOE in a “closed-loop” structure, followed by the use of

analytical techniques to examine the data and gain insights from it.

 52

B. TLCM-AT

TLCM-AT is a discrete-event simulation tool developed to assist USMC program

managers charged with the task of analyzing the impact of LCM decisions on fleet

readiness and availability. The creators of TLCM-AT, Clockwork Solutions, adapted an

existing tool in use by the United States Army to provide the USMC with the ability to

predict performance metrics within operations, maintenance, and supply for a single asset

or series/fleet of assets. Young (2008) performed the first exploratory analysis of TLCM-

AT in a DOE environment.

Based on the findings by Young (2008) and the results of this thesis, it is apparent

that TLCM-AT behaves in a rational manner, i.e., the values of the MOEs, as represented

by the output data, match the expectations of an LCM professional. An inspection of the

output data shows that correlations between pairs of MOEs mostly follow a logical

pattern. Examples include the correlation between number of shipments (Sh) and

platform events (En). It makes sense that if platform events increase, the number of

shipments increases as well. The same can be concluded for the correlation between and

Pt, and Sh and Pt.

At the same time, there are some unforeseen results that warrant further research.

The main unexpected outcome found during this research is the behavior of Ao, which

did not vary as much as expected by the author. During Young’s (2008) study, the only

MOE collected was Ao. He implemented DOE by modifying the same factors as in this

study, but in his research, the modifications applied to 25 SecReps. During this study,

the DOE modifications applied to all 175 SecReps, and it even applied to the two new

and improved parts acquired for the scenarios. The author expected a significantly larger

variance in Ao, but the unexpected result might be related to the way TLCM-AT

measures Ao and the way the scenarios were implemented. TLCM-AT defines Ao as the

number of available platforms to operate, divided by the number of assigned platforms in

a given period. An available platform is one that is populated, which means all of its

components are installed. According to Dr. Gurvitz (2008), the definition of populated

does make a distinction between faulty and operating installed components.

 53

Equally surprising is how Ao and AoH output is related to En. As we have seen,

the simulation produces consistently high Ao whenever En has either high or low outputs.

As En output moves toward the middle range, the output of Ao becomes less predictable.

The same relationship exists between AoH and En. Intuition says that a low En value

should relate to a high Ao and AoH value. The author could not explain why these

phenomena occur.

The level of complexity in a TLCM-AT based model is worrisome. Successful

implementation of a scenario requires a level of expertise that not many would have the

time or motivation to acquire. This complexity is related to the level of fidelity in the

model. As has been noted, a model represents most components that make up a platform.

Each one is represented by a serial number and is directly tied to their parent unit, a

higher assembly, or an end item. For this research, the four scenarios used were created

by Dr. Peter Figliozzi, a modeler and analyst for Clockwork Solutions. Any attempt to

model a scenario without the proper understanding of the TLCM-AT logic would very

likely generate inaccurate results.

C. PROTOTYPE APPLICATION

TLCM-AT uses Access databases to manipulate the inputs and outputs of a model

designed to represent a holistic view of a system. A typical model database consists of

over 120 input and output tables, many of which contain over 240,000 line entries. Once

again, the reason for this complexity is that TLCM-AT tracks each component by serial

number, i.e., each end item, SecRep, and even some consumables, that make up a

platform. Manipulating such a complex database is very burdensome. Any attempt to

use TLCM-AT during a DOE analysis requires a method of modifying these databases

sequentially for each design point. The solution is to apply the created computer

application that automates database manipulation, so DOE analysis can be performed

without the need for manual human interaction.

 54

The main challenge during development of the application was mastering SQL.

Anyone considering using the application must be proficient in SQL or unintended results

can occur. One lesson learned was the need to understand how to identify different data

types within a database, e.g., text or number, in order to produce successful SQL

statements.

D. DATA ANALYSIS

The scenarios built for this effort required the deployed LAVs to operate for a

number of hours, and once that goal was achieved, the platforms stopped operating.

These are realistic scenarios, but they produced data sets that were of limited value.

COAs 1-3 achieved their required operating hours for a significant portion of the sample

space. A better approach would be to cut the number of available LAVs or significantly

increase the number of required operating hours. This way, the simulation runs would

produce more useful data sets, since the output would include a better breakdown of

which scenarios are better than the others.

The analysis performed in Chapter V introduces an example of how analysts can

use the data collected during this kind of study to provide decision makers with

information critical for the development of COAs and policies. TLCM-AT is very

capable of performing “what-if” scenario studies, where multiple COAs can be compared

against a given MOE. The principal disadvantage of this kind of analysis is that the

results of such a study are dependent on a very narrow set of circumstances. The

probabilities of encountering the same set of circumstances in real life are practically

zero, and therein lies the importance of DOE. A DOE analysis explores the same

alternatives, but over a wide range of circumstances, enabling analysts to discern how

sensitive a COA is to changes in the environment. No one can predict what precise set of

circumstances real life will bring, but the goal of a well-developed DOE (one that uses

reasonable parameter ranges) is to include a reasonable space of possibilities in the study,

which should include the circumstances of real life. The comparative analysis performed

 55

in Chapter V shows how simple it is to determine that COA2 is the most robust. Analysts

can use the graphical representations to see how a COA performs over the whole sample

space, rather than looking at a single or few “what-if” scenario study results.

Regression analysis provides analysts with insights into the inner workings of a

system of systems. This study includes several regression models designed to explain the

behavior of a data set; an effort that includes everything from simple regression to

polynomial models. Decision makers can use regression analysis to determine which

critical factors affect a system, and can interpret parameter estimates produced during

regression analysis as the marginal cost, or benefit, per unit of increase in a parameter,

assuming everything else remains the same. These marginal cost values help decision

makers to understand the expected benefit of making a resource investment in an effort to

improve system performance. The results of this analysis show that investing in ways to

lower service times would likely have the greatest effect on achieved operating hours as

long as the cost associated with that investment is acceptable. Maintenance managers can

implement reductions in service time in different ways, including increases in capacity or

personnel, better training, better tools, implementation of lean work habits, etc.

Data partition analysis is a powerful tool, capable of providing insights into a data

set that other methods do not provide. Analysts can use partition analysis to isolate

points of interest, outliers, best performance, worst performance, etc. The value of

partition analysis is that it easily identifies the set of circumstances that lead to a

particular situation. It can also be used to identify important thresholds affecting system

performance. The analysis performed on the AoH data set revealed that if the value of

service time is limited to less than 4.5313, the mean AoH is 102,263. On the other hand,

if service time is greater than 4.5313, the mean of AoH is 82,682—a difference of over

19,000 achieved operating hours by simply limiting the service time. Another example

of how analysts can use partition analysis is the result of the COA2 analysis, where all

extreme values were isolated. The conditions leading to the extreme values are: spare

levels fewer than two, degradation greater than 0.9688, and service time greater than

5.2344.

 56

E. FOLLOW-ON RESEARCH

Further research using DOE and TLCM-AT needs to include cost as an MOE.

Cost data is implemented in TLCM-AT differently from all the other data collected for

this thesis. Any effort to use cost as part of a DOE analysis would require the assistance

of Clockwork Solutions. Other research should include analysis that isolates the sample

space, where the extreme values occur in the COA2 AoH data set. For this effort, high

and low levels on the NOLH should be limited to those values that lead to the extreme

value behavior.

 57

APPENDIX A. JAVA APPLICATION

A. UPDATEDATABASE CLASS

1. Source Code

The UpdateDataBase class contains the Main Method from which the application

runs. The Main Method coordinates inputs, design implementation into the working

model, launches the simulation tool, and collects and saves an output file usable for later

analysis. Every other Java class included in the application runs from this Main Method.

The source code for the UpdateDataBase class follows below:
import java.io.*;

public class UpdateDataBase{

 public static void main(String[] args) {

 // Instantiate a List object to create an array of

Secondary Repairables, boolean for header row or not
 List secRepList = new List("SecReps_COA3.csv", false);
 String[] secReps = secRepList.getDegraders();

 // Instantiate a List object to create an array of SRANs,

boolean for header row or not
 List sranList = new List("srans_base.csv", false);
 String[] srans = sranList.getDegraders();

// Instantiate a NOLH object to create a design array,
boolean for header row or not, int is number of factors

 NOLH designList = new NOLH("ThesisHOLH.csv", false, 5);
 String[][] design = designList.getDesign();

 try{

PrintWriter outputStream = new PrintWriter(new
FileOutputStream("TLCM-AT_Results.csv"));
outputStream.append("Design ,Spares ,IQ ,Capacity
,Degradation ,ServTime ,Ao ,AoH ,En ,SBn ,Sh ,MTBF
,Pt");//Printing output headings

 outputStream.println();

 for (int x = 0; x < 129; x++) {

// Create a copy of the source file using CopyFile
class

 58

CopyFile file = new CopyFile("LAV 3042 v5 jungle COA 3
no out.mdb", "C:\\Program Files\\Clockwork
Solutions\\TLCM-AT 5.2\\smalldb1.mdb");

 file = null;

//Instantiate an UpdateSpares object to modify spares
levels for a given design
UpdateSpares spare = new
UpdateSpares("jdbc:odbc:smalldb1",
"sun.jdbc.odbc.JdbcOdbcDriver", design, secReps, x,
srans);

 spare.doUpdate();
 spare = null;

// Instantiate an UpdateAbilityToRepair object to
modify ability to repair at the depot level
UpdateAbilityToRepair repair = new
UpdateAbilityToRepair("jdbc:odbc:smalldb1",
"sun.jdbc.odbc.JdbcOdbcDriver", design, x);

 repair.doUpdate();
 repair = null;

// Instantiate an UpdateServerTimes object to modify
length of repairs for each degrader
UpdateServerTimes serv = new
UpdateServerTimes("jdbc:odbc:smalldb1",
"sun.jdbc.odbc.JdbcOdbcDriver", design, x);

 serv.doUpdate();
 serv = null;

// Instantiate an UpdateCapacity object to modify
capacity constraints for repairs of each degrader
UpdateCapacity cap = new
UpdateCapacity("jdbc:odbc:smalldb1",
"sun.jdbc.odbc.JdbcOdbcDriver", design, x);

 cap.doUpdate();
 cap = null;

// Instantiate an UpdateRepairDeg object to modify
LRUs’ unscheduled removal rates
UpdateRepairDeg deg = new
UpdateRepairDeg("jdbc:odbc:smalldb1",
"sun.jdbc.odbc.JdbcOdbcDriver", design, x);

 deg.doUpdate();
 deg = null;
 System.gc();

RunProgram run = new RunProgram("C:\\Program
Files\\Clockwork Solutions\\TLCM-AT 5.2\\modelr.exe -
30");

 run.run();
 run = null;

 // Instantiate an UpdateOutput object to collect the

 59

results from the database
UpdateOutput result = new UpdateOutput
("jdbc:odbc:smalldb1",
"sun.jdbc.odbc.JdbcOdbcDriver");

 int n = x+1;
 outputStream.append(n+" ,"+design[x][0]+"

,"+design[x][1]+" ,"+design[x][2]+" ,"+design[x][3]+"
,"+design[x][4]+" ,");

 double[] stat = new double[7];
 stat = result.getResult();
 for(int i = 0; i < 7; i++){
 outputStream.append(stat[i]+" ,");
 }

 outputStream.println();
 System.gc();
 int r = x+1;;
 System.out.println("Completed design number "+r);
 }

 outputStream.close();
 }
 catch (FileNotFoundException e) {
 System.out.println("File not found.");
 }
 }// End of Main Method
}// End of UpdateDataBase Class

2. How It Works

The application instantiates a List object using as an argument a .csv file listing all

SecReps and a boolean expression determined by the presence of a header row in the

input list. List takes the .csv file and transforms it into an array of SecReps. To develop

the SecRep .csv file, users can query the *Object type table within the model being used

using the criteria greater than 700000000 and less than 900000000 for Object type. For

the list of SRANs the process is very similar. Users can create the SRAN .csv file by

looking at the *Base Names table within the model. The author’s list includes only the

MEF and jungle bases.

Using the Orthogonal and Nearly Orthogonal LH Worksheet file (Sanchez, 2005),

users can develop a .csv file with a NOLH design. The application instantiates a NOLH

object using the .csv file, a boolean expression determined by the presence of header row

on the file, and an integer representing the number of factors varied in the design. The

result is a two-dimensional array containing the DOE to be used in the simulation.

 60

Java uses the PrintWriter package to create an output file, which, in this case, is

saved as TLCM-AT_Results.csv. The PrintWriter object appends the header row to the

output as follows: Design ,Spares ,IQ ,Capacity ,Degradation ,ServTime ,Ao ,AoH ,En

,SBn ,Sh ,MTBF ,Pt. These headers include the design number, the input parameters as

listed on the DOE design array, and the MOE’s outputs.

A for loop iterates over every design point in the design array; it is important to set

the loop to run as long as the number of design points. A CopyFile object creates a working

copy of the model being used in our simulation. Copying the file has two purposes: (1) to

preserve the baseline model intact so subsequent designs are easier to implement, and (2) to

create a working model named smalldb1.mdb, which is the only possible file name to be used

in our simulation. TLCM-AT only uses that file name whenever the tool is launched from

the command line; the only available argument for command line operation is the number of

histories. Also, the file needs to be located in the same directory as the tool’s executable file.

At this point, Java updates the working file one parameter at a time. Java uses

UpdateSpares, UpdateAbilityToRepair, UpdateServerTimes, UpdateCapacity, and

UpdateRepairDegradation to perform each parameter adjustment. In each case, the object

created performs the doUpdate() method to complete the update. Each class has a slightly

different set of arguments, but these are discussed below. The application launches the tool

by instantiating a RunProgram object. RunProgram objects take as arguments the command

line statement used to launch TLCM-AT. The number at the end of the command line

argument, in this case 30, is where users determine the number of replications to run for each

design.

An UpdateOutput object takes the working model to extract the data used in

calculating the MOEs of interest. The PrintWriter object adds the design parameter levels to

the output file, followed by the MOE values. UpdateOutput object creates these values and

saves then into an array of size seven. The application retrieves the array into a newly

created one and uses a for loop to populate the output file. At this point, Java continues to

iterate through every design point using the main for loop. After every design has been

simulated, the application closes the PrintWriter object and saves the output file.

 61

B. LIST CLASS

1. Source Code

The List class takes any set of items listed in a .csv file and produces a single-

dimension array containing the listed items. Our Java application uses List to convert the

SecRep and SRAN .csv files into arrays for use as inputs for database modification. The

source code for the List class follows below:
import java.io.*;

public class List{

 private int numItems;
 private String[] list;

 public List (String file, boolean header){//Constructor

numItems = countFileLength(file, header);// Count number of
records to size the array

 list = populateList(file, header);
 }

 public int countFileLength(String filename, boolean

hasHeaderRow){
 int count = 0;
 try{

BufferedReader inputStream = new BufferedReader(new
FileReader(filename));

 String line = inputStream.readLine();
 if ((line != null) && hasHeaderRow)

line = inputStream.readLine(); // skip to next
line without counting

 while (line != null){
 count++;
 line = inputStream.readLine();
 }
 inputStream.close();
 }
 catch(FileNotFoundException e){
 System.err.println("File opening problem.");
 System.err.println(e.getMessage());
 System.exit(-1);
 }
 catch(IOException e){

System.out.println("Error reading from file
"+filename);

 System.out.println(e.getMessage());
 System.exit(-1);
 }

 62

 return count;
 }//End of countFileLength

 public int getNumItems(){
 return numItems;
 }

 public String[] populateList(String filename, boolean header) {
 String[] items = new String[numItems];
 try {
 BufferedReader inputStream = new BufferedReader(new

FileReader(filename));
 String line = inputStream.readLine();

// if header row, skip the first line, by reading the
next

 if (header) {
 line = inputStream.readLine();
 }
 for(int x = 0; x < numItems; x++){
 items[x] = line;
 line = inputStream.readLine();
 }
 inputStream.close();
 }
 catch(FileNotFoundException e){
 System.err.println("File opening problem.");
 System.err.println(e.getMessage());
 System.exit(-1);
 }
 catch(IOException e){

System.err.println("Error reading from file
"+filename);

 System.err.println(e.getMessage());
 System.exit(-1);
 }
 return items;
 }// End of populateList method

 public String[] getDegraders() {
 return list;
 }

}//End of List Class

2. How It Works

The constructor for List takes as parameters a String object and a boolean

expression. The String object contains a single column .csv file listing the items to be

included in the output array. The boolean expression determines the existence of a

header row in the input file. There are two instance variables in this class: (1) int

 63

numItems and (2) String [] list. Using the method countFileLength, the constructor sets

the value of numItems. Subsequently, the constructor invokes populateList to create the

output array.

The countFileLength method takes the same parameters as the constructor. A

BufferedReader object reads the input file. The method uses an if statement to skip a line

if a header row exists and a while loop to count the number of items on the list. After

every line is counted, countFileLength returns an integer object representing the number

of items on the input file.

Once again, populateList takes the same parameters as the constructor. The

method starts by declaring a String array and uses the value of numItems to determine the

size of the array. The rest of the method is very similar to countFileLength, except that in

this case, it is populating the array instead of counting line items. Furthermore, the

method uses a for instead of a while loop because the number of items in the list is

known.

C. NOLH CLASS

1. Source Code

The NOLH class performs the same function as the List class except that it

produces a two- versus a single-dimension array. NOLH reads a .csv file representing

every design point on a DOE and creates a two-dimensional array to be used as input

during database modification. The source code for the NOLH class follows below:
import java.io.*;
import java.util.StringTokenizer;

public class NOLH {

 private String[][] design;
 private int count;
 private int numFactors;

public NOLH (String file, boolean header, int
factors){//Constructor

 numFactors = factors;
 count = countFileLength(file, header);
 design = new String[count][5];

 64

 readDesign(file, header); //To populate design
 }

 public static int countFileLength(String filename, boolean

hasHeaderRow) {
 int count = 0;
 try {

BufferedReader inputStream = new BufferedReader(new
FileReader(filename));

 String line = inputStream.readLine();
 if ((line != null) && hasHeaderRow)

line = inputStream.readLine(); // skip to next
line without counting

 while (line != null){
 count++;
 line = inputStream.readLine();
 }
 inputStream.close();
 }catch(FileNotFoundException e){
 System.err.println("File opening problem.");
 System.err.println(e.getMessage());
 System.exit(-1);}
 catch(IOException e){

System.out.println("Error reading from file
"+filename);

 System.out.println(e.getMessage());
 System.exit(-1);}

 return count;
 }//End of countFileLength

 public void readDesign(String filename, boolean header) {

 try {

BufferedReader inputStream = new BufferedReader(new
FileReader(filename));

 String line = inputStream.readLine();

// if header row, skip the first line, by reading the
next

 if (header) {
 line = inputStream.readLine();
 }
 String delim = ",";
 for(int x = 0; x < count; x++){

StringTokenizer parser = new
StringTokenizer(line, delim);

 for (int y = 0; y < numFactors; y++){
 design[x][y] = parser.nextToken();
 }
 line = inputStream.readLine();
 }
 inputStream.close();
 }
 catch(FileNotFoundException e)

 65

 {
 System.err.println("File opening problem.");
 System.err.println(e.getMessage());
 System.exit(-1);
 }
 catch(IOException e)
 {

System.err.println("Error reading from file
"+filename);

 System.err.println(e.getMessage());
 System.exit(-1);
 }
 }//End of readDesign

 public String[][] getDesign() {
 return design;
 }

 public int getCount() {
 return count;
 }

}//End of NOLH Class

2. How It Works

NOLH’s constructor uses three parameters: a String object, a boolean expression,

and an integer number. The String object contains the DOE information on a .csv file

using rows to represent design points and columns to represent levels of varying factors.

A booloean expression determines the existence of a header row in the file, while the

integer represents the number of factors being modified.

NOLH has three instance variables: (1) String [] [] design, (2) int count, and

(3) int numFactors. The constructor’s integer parameter sets the value of numFactors.

Using the boolean expression and the String object, the constructor invokes the

countFileLength method to determine the number of design points on the DOE and sets

the value of count. With the known value of count, the constructor sets enough memory

aside to populate the design array and the readDesign method populates it.

 66

D. NOLH CLASS

1. Source Code

This class is designed using information posted on the Sun Developer Network

(2007) Website as a template. It copies any given file and saves it under a given name.

The application uses this class to make a copy of the baseline model and saves it as the

working model on the same directory of the TLCM-AT tool. The source code for the

CopyFile class follows below:
import java.io.*;

public class CopyFile {

 public CopyFile(String srFile, String dtFile){
 try{
 File f1 = new File(srFile);
 File f2 = new File(dtFile);
 InputStream in = new FileInputStream(f1);
 OutputStream out = new FileOutputStream(f2);
 byte[] buf = new byte[1024];
 int len;
 while ((len = in.read(buf)) > 0){
 out.write(buf, 0, len);
 }
 in.close();
 out.close();
 buf = null;
 System.gc();
 f1 = null;
 f2 = null;
 }
 catch(FileNotFoundException ex){
 System.out.println(ex.getMessage() + " in the specified

directory.");
 System.exit(0);
 }
 catch(IOException e){
 System.out.println(e.getMessage());
 }
 }
}

2. How It Works

The constructor takes two parameters: a String object representing the source file

name and directory, and a String object representing the destination file name and

 67

directory. If the directory is the same as the directory of the Java program, there is no

need to include directory information on the parameter. This program copies a file

regardless of file format; the copy is made byte by byte.

E. UPDATESPARES CLASS

1. Source Code

UpdateSpares class controls the number of spares that are added to each

experiment, based on a given design point. Spares are never removed from a baseline

model, the class only adds spares. To accomplish this, UpdateSpares inserts a number of

objects into the *Object attributes initial table. The application has to insert each object

into the table with its own object type, serial number, and location where the spare will be

stored. The source code for the UpdateSpares class follows below:
import java.sql.*;
import java.util.*;

public class UpdateSpares{

 private String dBurl;
 private String dBdriver;
 private String[][] des;
 private String[] secRep;
 private int exp;
 private String[] srans;

 public UpdateSpares(String dBurl, String dBdriver, String[][]

des, String[] secReps, int exp, String[] sranList){
 this.dBurl = dBurl;
 this.dBdriver = dBdriver;
 this.secRep = secReps;
 this.des = des;
 this.exp = exp;
 this.srans = sranList;
 }

 /**
 * @param args
 */
 public void doUpdate(){

 try{
 Class.forName(dBdriver);

Connection connection =
DriverManager.getConnection(dBurl);

 68

 int serNo = 1000000;

 // Create an array of objects and SRAN combinations

String [][] newSpares = new
String[srans.length*secRep.length][2];

 int arrayRow = 0;
 for(int x = 0; x < secRep.length; x++){
 for(int y = 0; y < srans.length; y++){
 newSpares[arrayRow][0] = secRep[x];
 newSpares[arrayRow][1] = srans[y];
 arrayRow++;
 }
 }

// Insert new spares in *Object attributes initial
table

 arrayRow = 0;
 PreparedStatement addSecReps;

for(int x = 0; x < Integer.valueOf(des[exp][0]); x++){
//Iterate over SecReps

for(int y = 0; y < newSpares.length; y++){ //
Iterate over number of spares per SecReps
addSecReps = connection.prepareStatement("INSERT
INTO [*Object attributes initial] ([Object ID],
[Object type], [AFHRv], [AFHRn], [Atacn],
[Atacv], [Aeotn], [Aeotv], [Awown], [Awowv],
[Parent Pp], [F], [Arrival time ta],
"[SRAN], [Completed Repairs], [Probabilistic
age], [TreeCode], [TreeParent]) VALUES
('"+serNo+++"', "+newSpares[y][0]+", 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, "+newSpares[y][1]+", 0, 0,
'0', '0')");

 addSecReps.executeUpdate();
 addSecReps = null;
 }
 }
 newSpares = null;
 connection.close();
 connection = null;

 }// End of Try Loop
 catch (ClassNotFoundException cnfe){
 System.err.println(cnfe);
 }
 catch (SQLException sqle) {
 System.out.println(sqle);
 while(sqle != null){
 sqle = sqle.getNextException();
 System.err.println(sqle);}
 }
 }//End of doUpdate
}//End of Class

 69

2. How It Works

UpdateSpares’s constructor takes six parameters: (1) a String object representing

a Uniform Resource Locator (URL) for the data source, (2) a String object representing a

URL for the ODBC driver, (3) a two-dimension array of String objects representing the

DOE, (4) a single-dimension array of String objects representing the list of SecReps,

(5) an integer number representing the design point, and (6) a single-dimension array of

String objects representing the list of SRANs. All six instance variables take their

corresponding value from one of the parameters mentioned above within the constructor.

The class implements one void method, doUpdate(), which performs all the

functions required from this class. It is important to note here, that before trying to use

this class, users need to set up an Access database driver using the ODBC Data Source

Administrator dialog box as explained in Chapter III, Section D. To load the desired

ODBC driver, the application invokes the method forName() from the Class class using

the value of dBdriver as the argument. Using a Connection object, users can maintain a

connection to the database of interest, such connection is critical prior to executing any

SQL statements. The application uses the integer value serNo to assign individual serial

numbers to each new spare.

UpdateSpares creates an array of objects and SRAN combinations; each SecRep

is matched with each SRAN. The array newSpares is of size equal to the number of

SecReps, times the number of SRANs included on the analysis. The application

instantiates a PreparedStatement object using the Connection object created at the

beginning. The argument for the Connection class prepareStatement() method is the

SQL statement. During this process, the application iterates over the individual SecRep

and SRAN combinations using the inner for loop, and over the number of spares to add

using the outer for loop. The PreparedStatement object has to invoke its executeUpdate()

method to complete each SQL statement.

 70

F. UPDATEABILITYTOREPAIR CLASS

1. Source Code

UpdateAbilityToRepair class implements the changes to the Depot spares

program according to the values set forth by the design point. These changes take place

within the *Depot Spares Program table. For each scenario, the application updates the

number of parts that can be inducted into the different Depots per quarter. The source

code for the UpdateAbilityToRepair class follows below:
import java.sql.*;

public class UpdateAbilityToRepair{

 private String dBurl;
 private String dBdriver;
 private String[][] des;
 private int exp;

public UpdateAbilityToRepair(String dBurl, String dBdriver,
String[][] des, int exp){

 this.dBurl = dBurl;
 this.dBdriver = dBdriver;
 this.des = des;
 this.exp = exp;
 }

 public void doUpdate() {
 try {
 Class.forName(dBdriver);

Connection connection =
DriverManager.getConnection(dBurl);

 //Perform updates

String updateRepairAbility = "UPDATE [*Depot Spares
Program] SET [Quantity] = "+des[exp][1]+" WHERE
[Object Type]> 700000 AND [Object Type]< 900000";
PreparedStatement updateLevels =
connection.prepareStatement(updateRepairAbility);

 updateLevels.executeUpdate();
 updateRepairAbility = null;
 updateLevels = null;

 connection.close();
 connection = null;
 des = null;
 }
 catch (ClassNotFoundException cnfe) {
 System.err.println(cnfe);}
 catch (SQLException sqle) {

 71

 System.err.println(sqle);}
 }//End of doUpdate
}//End of Class

2. How It Works

The constructor receives four parameters: (1) a String object representing a URL

for the data source, (2) a String object representing a URL for the ODBC driver, (3) a

two-dimension array of String objects representing the DOE, and (4) an integer number

representing the design point. All four instance variables take their corresponding value

from one of the parameters mentioned above within the constructor.

UpdateAbilityToRepair implements the doUpdate() method and is responsible for

performing every function within this class.

The doUpdate() method starts with the identification of the data source and

creation of a connection, just like in the UpdateSpares class. The application instantiates

a PreparedStatement object using the Connection object created at the beginning. The

argument for the Connection class prepareStatement() method is the SQL statement.

Later, the PreparedStatement object executes the update. Notice how, in this case, there

are no loops involved; Java is able to perform the update all at once, using the specially

created SQL statement.

G. UPDATESERVERTIMES CLASS

1. Source Code

The UpdateServerTimes class updates the server times associated with repairing

each SecRep by multiplying the current value by the value on the design point. As

expected, these updates take place in the *Server times table. The source code for the

UpdateServerTimes class follows below:
import java.sql.*;
import java.text.DecimalFormat;

public class UpdateServerTimes{

 private String dBurl;
 private String dBdriver;
 private String[][] des;

 72

 private int exp;

public UpdateServerTimes(String dBurl, String dBdriver, String[][]
des, int exp){

 this.dBurl = dBurl;
 this.dBdriver = dBdriver;
 this.des = des;
 this.exp = exp;
 }

 public void doUpdate () {

 try {
 Class.forName(dBdriver);

Connection connection =
DriverManager.getConnection(dBurl);

PreparedStatement currentvals =
connection.prepareStatement ("SELECT [Object type],
[SRAN ID], [SERVER TYPE], [Tsf P1] FROM [*Server
times] WHERE [Object type]> 700000000 AND [Object
Type]< 900000000");

 ResultSet curValues = currentvals.executeQuery();

 while(curValues.next()) {

DecimalFormat form = new
DecimalFormat("0.0000");
String var =
form.format(Double.valueOf(curValues.getString(4
))*Double.valueOf(des[exp][4]));

String updateServerTimes = "UPDATE [*Server
times] SET [Tsf P1] = "+var+" WHERE [Object
type] = "+curValues.getString(1)+" AND [SERVER
TYPE]= '"+curValues.getString(3)+"' AND [SRAN
ID] = "+curValues.getString(2);
PreparedStatement updateLevels =
connection.prepareStatement(updateServerTimes);

 updateLevels.execute();
 updateServerTimes = null;
 updateLevels = null;
 form = null;
 var = null;
 }

 curValues = null;
 currentvals = null;
 connection.close();
 connection = null;
 des = null;
 }
 catch (ClassNotFoundException cnfe) {
 System.err.println(cnfe);

}
 catch (SQLException sqle) {

 73

 System.err.println(sqle);
}

 }//End of doUpdate
}//End of Class

2. How It Works

The implementation of UpdateServerTimes is very similar to

UpdateAbilityToRepair. The constructor receives four parameters: (1) a String object

representing a URL for the data source, (2) a String object representing a URL for the

ODBC driver, (3) a two-dimension array of String objects representing the DOE, and

(4) an integer number representing the design point. All four instance variables take their

corresponding value from one of the parameters mentioned above within the constructor.

UpdateServerTimes implements the doUpdate() method and is responsible for

performing every function within this class.

The doUpdate() method starts with the identification of the data source and

creation of a connection, just like in the UpdateSpares class. The application instantiates

a PreparedStatement object using the Connection object created at the beginning. The

argument for the Connection class prepareStatement() method is an SQL statement

designed to query the current server times. The remainder of the operation consists of a

while loop, which controls each required update.

A String object takes the value of the current server time, multiplied by the design

point value. The Double class method valueOf() converts the String objects to Double

objects so the multiplication can take place. A new PreparedStatement object performs

the update using the newly created SQL statement and invoking the execute() method.

H. UPDATESERVERTIMES CLASS

1. Source Code

The class UpdateCapacity modifies the number of LRUs that an I-level facility

can process at a time. This modification takes place on the *Capacity table and simulates

investments in I-level capacity, including improvements or reductions in personnel and

 74

infrastructure. Our baseline LAV model currently models unlimited I-level capacity; this

Java class inserts those limits according to the values included in the DOE. The source

code for the UpdateCapacity class follows below:

import java.sql.*;

public class UpdateCapacity{

 private String dBurl;
 private String dBdriver;
 private String[][] des;
 private int exp;

public UpdateCapacity(String dBurl, String dBdriver, String[][]
des, int exp){

 this.dBurl = dBurl;
 this.dBdriver = dBdriver;
 this.des = des;
 this.exp = exp;
 }

 public void doUpdate() {

 try {
 Class.forName(dBdriver);

Connection connection =
DriverManager.getConnection(dBurl);

String SQLStatements = "INSERT INTO [*Capacity]
VALUES('20000', '-1', '2', '"+des[exp][2]+"')"; //
The 20000 above signifies that all capacity levels
happen at the I-Level

 Statement statement = connection.createStatement();
 statement.executeUpdate(SQLStatements);
 statement = null;
 SQLStatements = null;

 connection.close();
 connection = null;
 des = null;
 }
 catch (ClassNotFoundException cnfe){
 System.err.println(cnfe);
 }
 catch (SQLException sqle){
 System.err.println(sqle);
 }
 }//End of doUpdate
}//End of Class

 75

2. How It Works

The implementation of UpdateCapacity is very similar to UpdateAbilityToRepair.

The constructor receives four parameters: (1) a String object representing a URL for the

data source, (2) a String object representing a URL for the ODBC driver, (3) a

two-dimension array of String objects representing the DOE, and (4) an integer number

representing the design point. All four instance variables take their corresponding value

from one of the parameters mentioned above within the constructor. UpdateCapacity

implements the doUpdate() method and is responsible for performing every function

within this class.

The doUpdate() method starts with the identification of the data source and

creation of a connection, just like in the UpdateSpares class. This UpdateCapacity

implementation applies the same limit to every I-level facility; as a result, the process is

very simple and does not require the use of any loops. A String object is created to

represent the SQL statement. The *Capacity table contains four columns: SRAN ID,

Group Code, Ind level, and Cap. A 20000 in the SRAN ID signifies that all I level have

the same limit; the -1 is a special entry meaning that the capacity limit applies to all

LRUs. The 2 signifies I level and the last value is the new limit, represented by the

design array. A Statement object uses the SQL as argument to execute the update.

I. UPDATEREPAIRDEG CLASS

1. Source Code

The UpdateRepairDeg class modifies the unscheduled removal rates of every

SecRep. The Java implementation performs the update by multiplying the given value on

the DOE by the current value on the baseline model. Performing these adjustments can

model improvements in maintenance practices, or it can be used to model LRU reliability

improvements. The source code for the UpdateRepairDeg class follows below:

 76

import java.sql.*;

public class UpdateRepairDeg{

 private String dBurl;
 private String dBdriver;
 private String[][] des;
 private int exp;

public UpdateRepairDeg(String dBurl, String dBdriver, String[][]
des, int exp){

 this.dBurl = dBurl;
 this.dBdriver = dBdriver;
 this.des = des;
 this.exp = exp;
 }

 public void doUpdate() {
 try {
 Class.forName(dBdriver);

Connection connection =
DriverManager.getConnection(dBurl);

PreparedStatement currentvals =
connection.prepareStatement
("SELECT [LRU type], [Platform type], [Base],
[Completed Repairs], [Age Unit], [Rate], [Shape] FROM
[*Unscheduled Removal rates] WHERE [LRU type] >
700000000 AND [LRU type] < 900000000");

 ResultSet curValues = currentvals.executeQuery();

 while(curValues.next()) {

String var = String.valueOf (Double.valueOf
(curValues.getString(6))*Double.valueOf(des[exp][3])
);
String SQLStatements = "UPDATE [*Unscheduled Removal
rates] SET [Rate] = "+var+" WHERE [LRU type] =
"+curValues.getString(1)+" AND [Platform type] =
"+curValues.getString(2)+" AND [Base] =
"+curValues.getString(3)+" AND [Completed Repairs] =
"+curValues.getString(4)+" AND [Age Unit] =
'"+curValues.getString(5)+"' AND [Shape] =
"+curValues.getString(7);

 Statement statement = connection.createStatement();
 statement.executeUpdate(SQLStatements);
 var = null;
 statement = null;
 SQLStatements = null;
 }

 connection.close();
 connection = null;
 des = null;
 }
 catch (ClassNotFoundException cnfe) {

 77

 System.err.println(cnfe);}
 catch (SQLException sqle) {
 System.err.println(sqle);}
 }//End of doUpdate
}//End of Class

2. How It Works

The implementation of UpdateRepairDeg is very similar to

UpdateAbilityToRepair. The constructor receives four parameters: (1) a String object

representing a URL for the data source, (2) a String object representing a URL for the

ODBC driver, (3) a two-dimension array of String objects representing the DOE, and

(4) an integer number representing the design point. All four instance variables take their

corresponding value from one of the parameters mentioned above within the constructor.

UpdateRepairDeg implements the doUpdate() method and is responsible for performing

every function within this class.

The doUpdate() method starts with the identification of the data source and

creation of a connection, just like in the UpdateSpares class. Java instantiates a

PreparedStatement object using an SQL as argument. The SQL statement queries the

*Unscheduled Removal rates table for every SecRep related entry by using the criteria

[LRU type] > 700000000 AND [LRU type] < 900000000. A while loop controls the

update since each entry is done individually. Java multiplies the existing Rate value for

each SecRep by the value on the DOE, and the result is used as the new Rate on the

*Unscheduled Removal rates table.

J. RUNPROGRAM CLASS

1. Source Code

RunProgram does exactly that; it takes an executable file as an argument and

launches whatever application is associated with it. The source code for the RunProgram

class follows below:
public class RunProgram{

 private String fileLoc;

 78

 public RunProgram(String fileLocation) {
 fileLoc = fileLocation;
 }

 public void run(){
 try {
 Runtime rt = Runtime.getRuntime();

// This will launch the .exe file included in the
argument

 Process p = rt.exec(fileLoc);
System.out.println("TLCM-AT ended properly
"+p.waitFor());

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

2. How It Works

The constructor takes a String object that represents the location and name of an

executable file. The instance variable fileLoc takes the value of the argument on

the constructor.

The run() method launches the application using a Runtime object, which allows

the Java application to interface with Windows XP. System.out.println("TLCM-AT ended

properly "+p.waitFor()) gives the user an indication that the application completed

successfully. In case of successful completion, the text “TLCM-AT ended properly

123456789” shows up on the screen. The method waitFor() causes the current thread to

wait, if necessary, until the process represented by this Process object has terminated.

K. UPDATEOUTPUT CLASS

1. Source Code

UpdateOutput processes all the output requirements for use in our analysis. The

list of MOEs retrieved from the model after each simulation run includes:

• Availability (Ao) – Systems availability percentage for a period of time
• Achieved Operating Hours (AoH) – Achieved operating hours
• Events (En) – Number platform events due to failures
• New Spare Buys (SBn) – Number of new spare buys

 79

• Shipments (Sh) – Number of shipments between bases
• Mean Time Between Failures (MTBF) – Ratio between total achieved

operating hours and platform events due to failures
• Task Performed (Pt) – Number of tasks performed by all levels

The class makes the connections to the model database to retrieve the data and

uses the SimpleStats class to perform the statistical processes. The source code for the

UpdateOutput class follows below:
import java.sql.*;

public class UpdateOutput {

 private double[] result = new double[7];

 public UpdateOutput(String dBurl, String dBdriver){
 doUpdate(dBurl, dBdriver);
 }

 public void doUpdate(String dBurl, String dBdriver) {

 try {
 Class.forName(dBdriver);

Connection connection =
DriverManager.getConnection(dBurl);

 SimpleStats stat = new SimpleStats();
 int year = 2009;
 int quarter = 4;

 //Calculate Ao for Quarter 12

PreparedStatement currentvals =
connection.prepareStatement ("SELECT [SRAN], [Type],
[Year], [Qtr], [Week],[Availability] FROM [out
Availability] WHERE [Year]= "+year+" AND [QTR] ="+
quarter);

 ResultSet curValues = currentvals.executeQuery();

 while(curValues.next()) {
 double s = curValues.getDouble(6);
 stat.newobs(s);
 }
 result[0]= stat.sampleMean();

stat = null;//Clear stat for use during next
claculation

 //End of Ao Calculations

 //Begin AoH Calculations

currentvals = connection.prepareStatement ("SELECT
[SRAN], [Type], [Year], [Qtr], [Achieved] FROM [out
Flying Hours] WHERE [Year]= "+year+" AND [QTR]
="+quarter);

 curValues = currentvals.executeQuery();

 80

 stat = new SimpleStats();
 while(curValues.next()) {
 double s = curValues.getDouble(5);
 stat.newobs(s);
 }
 result[1]= stat.getSampleTotal();

stat = null;//Clear stat for use during next
claculation

 //End of AoH Calculations

//Begin En Calculations
currentvals = connection.prepareStatement ("SELECT
[SRAN ID], [Platform type], [Year], [Qtr],
[Unscheduled] FROM [out Aircraft events] WHERE [Year]=
"+year+" AND [QTR] ="+quarter);

 curValues = currentvals.executeQuery();

 stat = new SimpleStats();
 while(curValues.next()) {
 double s = curValues.getDouble(5);
 stat.newobs(s);
 }
 result[2]= stat.getSampleTotal();

stat = null; //Clear stat for use during next
claculation

 //End of En Calculations

//Begin SBn Calculations
currentvals = connection.prepareStatement ("SELECT
[Type], [SRAN], [Year], [Qtr], [Buys] FROM [out New
Buys] WHERE [Year]= "+year+" AND [QTR] ="+quarter);

 curValues = currentvals.executeQuery();

 stat = new SimpleStats();
 while(curValues.next()) {
 double s = curValues.getDouble(5);
 stat.newobs(s);
 }
 result[3]= stat.getSampleTotal();

stat = null; //Clear stat for use during next
claculation

 //End of SBn Calculations

//Begin Sh Calculations
currentvals = connection.prepareStatement ("SELECT
[From SRAN], [To SRAN], [Type], [Year], [Qtr],
[Shipments] FROM [out Shipments] WHERE [Year]=
"+year+" AND [QTR] ="+quarter);

 curValues = currentvals.executeQuery();

 stat = new SimpleStats();
 while(curValues.next()) {
 double s = curValues.getDouble(6);
 stat.newobs(s);

 81

 }
 result[4]= stat.getSampleTotal();

stat = null; //Clear stat for use during next
claculation

 //End of Sh Calculations

//Begin MTBF Calculations
 result[5]= result[1]/result[2];
 //End of MTBF Calculations

//Begin Pt Calculations
currentvals = connection.prepareStatement ("SELECT
[Task], [Object type], [SRAN ID], [Year], [Qtr], [Avg]
FROM [out Tasks Performed] WHERE [Year]= "+year+" AND
[QTR] ="+quarter);

 curValues = currentvals.executeQuery();

 stat = new SimpleStats();
 while(curValues.next()) {
 double s = curValues.getDouble(6);
 stat.newobs(s);
 }
 result[6]= stat.getSampleTotal();

 stat = null;
 currentvals = null;
 curValues = null;
 connection.close();
 connection = null;
 }
 catch (ClassNotFoundException cnfe) {
 System.err.println(cnfe);}
 catch (SQLException sqle) {
 System.err.println(sqle);}
 }

 public double[] getResult() {
 return result;

}

 public void setResult(double[] result) {
 this.result = result;

}
}

2. How It Works

The implementation of UpdateOutput has a constructor that receives two

parameters: (1) a String object representing a URL for the data source, and (2) a String

object representing a URL for the ODBC driver. There is one instance variable; an array

of double objects of size seven used to save the output values.

 82

The doUpdate() method performs all the functions in this class and it is invoked

by the constructor. After it receives the same parameters as the constructor, the method

starts with the identification of the data source, the creation of a connection, and it

instantiates a SimpleStats object to perform all the statistics. Two integer objects

determine the year and quarter from which to retrieve the data.

To calculate Ao, the application uses a PreparedStatement object to query the out

Availability table. The SQL used as argument retrieves every entry on that table with a

year equal to 2009 and quarter equal to four. A while loop controls the submission of

data to the SimpleStats object for statistical analysis. At the end, the application invokes

the SimpleStats sampleMean() method to populate the first item on the double array.

In the case of AoH, En, SBn, Sh, and Pt, the application creates new SQL

statements that query the out Flying Hours, out Aircraft events, out New Buys, out

Shipments, and out Tasked Performed tables, where year equals 2009 and quarter equals

four. The rest of the process here is similar to that of systems availability except, in these

cases, the statistic saved is the sample total versus sample mean.

For MTBF, the application takes the saved AoH and divides it by the saved En.

L. SIMPLESTATS CLASS

1. Source Code

 SimpleStats is a statistical program the author created during his first Java class.

It provides users with basic statistical measures of interest. The source code for the

SimpleStats class follows below:
public class SimpleStats {

 private double sampleMean;
 private double sampleVariance;
 private int sampleSize;
 private double min;
 private double max;

 public SimpleStats() {
 reset();
 }

 public void reset() {

 83

 sampleMean = Double.NaN;
 sampleVariance = Double.NaN;
 min = Double.POSITIVE_INFINITY;
 max = Double.NEGATIVE_INFINITY;
 sampleSize = 0;
 }

 public void newobs(double x) {
 sampleSize++;
 if (sampleSize == 1) {
 sampleMean = x;
 sampleVariance = 0.0;
 max = x;
 min = x;
 }
 if (sampleSize > 1) {

sampleVariance = ((((double) sampleSize - 2) /
(sampleSize - 1) * sampleVariance) + (((x -
sampleMean) * (x - sampleMean)) / sampleSize));
sampleMean = (sampleMean + (x - sampleMean) /
sampleSize);

 min = Math.min(min, x);
 max = Math.max(max, x);
 }
 }

 public double sampleMean() {
 return (sampleMean);
 }

 public double sampleVariance() {
 return (sampleVariance);
 }

 public double sampleStdDev() {
 return (Math.sqrt(sampleVariance));
 }

 public int sampleSize() {
 return (sampleSize);
 }

 public double min() {
 return (min);
 }

 public double max() {
 return (max);
 }

 public double getSampleTotal() {
 return sampleMean*sampleSize;
 }
}

 84

2. How It Works

The constructor invokes the reset() method to make sure all values are set to the

initial condition. Every process takes place within the newobs() method. The remaining

methods are all getter methods.

 85

APPENDIX B. NOLH DESIGN

In order to maximize the efficiency and space-filling effect of this experiment, the

author uses the orthogonal and nearly orthogonal LH worksheet (Sanchez, 2005) to

develop Tables 9 through 11 listing each design points. The worksheet is an Excel-based

tool developed to ease in the design of large-scale simulation experiments.
low level 0 0 0 0.5 0
high level 5 30 30 1.5 10
decimals 0 0 0 4 4

factor name Spares IQ I Cap Deg ST
 1 13 12 0.9531 3.3594
 4 9 13 0.9609 0.9375
 2 23 0 0.7734 4.1406
 3 27 9 0.8672 4.375
 0 12 17 0.7344 1.0156
 4 13 21 0.5078 3.9844
 2 30 23 0.7891 1.5625
 3 21 27 0.5625 3.4375
 0 1 8 0.7031 1.9531
 5 2 7 0.7656 1.1719
 0 29 14 0.7813 3.125
 5 30 8 0.8828 1.4063
 2 8 29 0.6797 4.0625
 4 7 28 0.8516 0.8594
 1 16 29 0.7266 4.6875
 4 23 30 0.5313 1.7188
 1 5 6 1.2422 0.3906
 5 11 8 1.2813 4.2188
 1 23 8 1.0234 2.1094
 3 29 11 1.25 1.25
 1 6 25 1.4531 4.9219
 3 8 19 1.4219 3.75
 1 22 23 1.4766 3.2813
 4 19 29 1.4844 1.875
 1 7 14 1.1094 3.2031
 5 0 14 1.0703 1.4844
 1 21 8 1.5 0.5469
 5 28 11 1.2031 1.6406
 1 14 23 1.0547 3.5938
 3 14 30 1.1953 4.8438
 2 22 21 1.2578 0.7031
 3 19 28 1.3906 1.3281
 0 11 10 0.8359 5.4688
 4 15 4 0.5938 5.3906
 2 28 2 0.9141 7.2656

Table 9. NOLH Design (Part 1)

 86

low level 0 0 0 0.5 0
high level 5 30 30 1.5 10
decimals 0 0 0 4 4

factor name Spares IQ I Cap Deg ST
 3 26 5 0.9375 6.3281
 0 10 19 0.6016 7.6563
 4 4 15 0.8984 9.9219
 2 28 28 0.6563 7.1094
 4 25 26 0.8438 9.375
 2 15 1 0.6953 7.9688
 4 11 13 0.6172 7.3438
 2 20 6 0.8125 7.1875
 3 24 4 0.6406 6.1719
 1 1 15 0.9063 8.2031
 4 13 19 0.5859 6.4844
 0 24 20 0.9688 7.7344
 3 26 24 0.6719 9.6875
 2 12 6 1.4609 7.4219
 4 3 4 1.0781 7.8125
 2 16 9 1.2891 5.2344
 5 25 4 1.375 7.5
 2 6 18 1.0078 9.5313
 4 4 27 1.125 9.2188
 1 21 16 1.1719 9.7656
 4 26 25 1.3125 9.8438
 1 3 10 1.1797 6.0938
 3 12 3 1.3516 5.7031
 1 25 12 1.4453 10
 3 20 13 1.3359 7.0313
 2 10 27 1.1406 5.5469
 3 3 18 1.0156 6.9531
 2 18 25 1.4297 7.5781
 5 17 20 1.3672 8.9063
 3 15 15 1 5
 4 17 18 1.0469 6.6406
 1 21 17 1.0391 9.0625
 3 7 30 1.2266 5.8594
 2 3 21 1.1328 5.625
 5 18 13 1.2656 8.9844
 1 17 9 1.4922 6.0156
 3 0 7 1.2109 8.4375
 2 9 3 1.4375 6.5625
 5 29 22 1.2969 8.0469
 0 28 23 1.2344 8.8281
 5 1 16 1.2188 6.875
 0 0 23 1.1172 8.5938
 3 22 1 1.3203 5.9375
 1 23 2 1.1484 9.1406
 4 14 1 1.2734 5.3125
 1 8 0 1.4688 8.2813
 4 25 24 0.7578 9.6094

Table 10. NOLH Design (Part2)

 87

low level 0 0 0 0.5 0
high level 5 30 30 1.5 10
decimals 0 0 0 4 4

factor name Spares IQ I Cap Deg ST
 0 19 22 0.7188 5.7813
 4 7 22 0.9766 7.8906
 2 1 19 0.75 8.75
 4 24 5 0.5469 5.0781
 2 22 11 0.5781 6.25
 4 8 7 0.5234 6.7188
 1 11 1 0.5156 8.125
 4 23 16 0.8906 6.7969
 0 30 16 0.9297 8.5156
 4 9 22 0.5 9.4531
 0 2 19 0.7969 8.3594
 4 16 7 0.9453 6.4063
 2 16 0 0.8047 5.1563
 3 8 9 0.7422 9.2969
 2 11 2 0.6094 8.6719
 5 19 20 1.1641 4.5313
 1 15 26 1.4063 4.6094
 3 2 28 1.0859 2.7344
 2 4 25 1.0625 3.6719
 5 20 11 1.3984 2.3438
 1 26 15 1.1016 0.0781
 3 2 2 1.3438 2.8906
 1 5 4 1.1563 0.625
 3 15 29 1.3047 2.0313
 1 19 17 1.3828 2.6563
 3 10 24 1.1875 2.8125
 2 6 26 1.3594 3.8281
 4 29 15 1.0938 1.7969
 1 17 11 1.4141 3.5156
 5 6 10 1.0313 2.2656
 2 4 6 1.3281 0.3125
 3 18 24 0.5391 2.5781
 1 27 26 0.9219 2.1875
 3 14 21 0.7109 4.7656
 0 5 26 0.625 2.5
 3 24 12 0.9922 0.4688
 1 26 3 0.875 0.7813
 4 9 14 0.8281 0.2344
 1 4 5 0.6875 0.1563
 4 27 20 0.8203 3.9063
 2 18 27 0.6484 4.2969
 4 5 18 0.5547 0
 2 10 17 0.6641 2.9688
 3 20 3 0.8594 4.4531
 2 27 12 0.9844 3.0469
 3 12 5 0.5703 2.4219
 0 13 10 0.6328 1.0938

Table 11. NOLH Design (Part 3)

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

LIST OF REFERENCES

Cioppa, T.M. (2002, September). Efficient nearly orthogonal and space-filling
experimental designs for high-dimensional complex models. PhD. Dissertation.
Monterey, CA: Naval Postgraduate School.

Cioppa, T.M., & Lucas, T.W. (2006). Efficient nearly orthogonal and space-filling Latin
hypercubes. Technometrics.

Clockwork Solutions, Inc. (1992-2007). Total life cycle management assessment tool
(TLCM-AT). User’s Manual Ver. 5.2. Austin, TX: Clockwork Solutions, Inc.

Clockwork Solutions, Inc. (1992-2005). Aircraft total life cycle assessment software tool
(ATLAST). Technical Reference Manual Ver. 5.0. Austin, TX: Clockwork
Solutions, Inc.

Clockwork Solutions, Inc. (2007, August). TLCM-AT training material, Chapter 2.
Austin, TX: Clockwork Solutions, Inc.

Devore, J.L. (2004). Probability and statistics for engineering and the sciences.
Belmont, CA: Thomson Learning.

EPA Victoria. (2006). A wealth of business value, life cycle management. Retrieved July
12, 2008, from http://www.epa.vic.gov.au/lifecycle/default.asp

Gurvitz, N. Naaman.Gurvitz@clockwork-solutionsus.com. RE: Undelivered Mail
Returned to Sender. August 21, 2008.

Horton, I. (2005). Ivor Horton’s beginning Java™ 2 JDK 5 Edition. Indianapolis, IN:

Wiley Publishing.

Kleijnen, J.P.C., Sanchez, S.M., Lucas, T.W., & Cioppa, T.M. (2005). A user’s guide to
the brave new world of designing simulation experiments. INFORMS Journal on
Computing, 17, No. 3, 263-289.

Law, A., & Kelton, W.D. (1999). Simulation modeling and analysis. Boston, MA:
McGraw-Hill.

Sanchez, S.M. (2005). NOLHdesigns spreadsheet. Retrieved July 23, 2008, from
http://diana.cs.nps.navy.mil/SeedLab/

SECNAVINST 5400.15C. (2007, September). Department of the Navy (DON) Research
and Development, Acquisition, Associated Life-Cycle Management, and
Logistics Responsibilities and Accountability.

 90

Sun Developer Network. (2007). Developer forums, Java programming - copy file.
Retrieved July 25, 2008, from http://forums.sun.com/thread.jspa?
messageID=2834416

Wikipedia. (2007). Data farming. Retrieved July 31, 2008, from
http://en.wikipedia.org/wiki/Data_farming

Young, E. (2008). Total life cycle management – assessment tool: An exploratory analysis.
Master’s thesis. Monterey, CA: Naval Postgraduate School.

 91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Maj Matthew Reuter
 Headquarters, USMC
 Installation & Logistics
 Washington, D.C.

4. Capt David Vaughan
 Headquarters, USMC
 Installation & Logistics
 Washington, D.C.

5. Nicholas Linkowitz
 Headquarters, USMC
 Installation & Logistics
 Washington, D.C.

6. Ronald Brassard
 Headquarters, USMC
 Installation & Logistics
 Washington, D.C.

7. Maj Robert Charlton

Headquarters, USMC
 Installation & Logistics
 Washington, D.C.

8. Maj Stephen Mount

Marine Corps Systems Command
Quantico, Virginia

9. Hugh Saint
 Clockwork Solutions
 Austin, Texas

 92

10. Larry Paige
 Concurrent Technologies Corporation
 Stafford, Virginia

11. Professor Thomas W. Lucas
 Naval Postgraduate School
 Monterey, California

